School of Chemistry - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 4 of 4
  • Item
    Thumbnail Image
    Tunable Porous Coordination Polymers for the Capture, Recovery and Storage of Inhalation Anesthetics
    Abrahams, BF ; Dharma, AD ; Donnelly, PS ; Hudson, TA ; Kepert, CJ ; Robson, R ; Southon, PD ; White, KF (Wiley, 2017-06-12)
    The uptake of inhalation anesthetics by three topologically identical frameworks is described. The 3D network materials, which possess square channels of different dimensions, are formed from the relatively simple combination of ZnII centres and dianionic ligands that contain a phenolate and a carboxylate group at opposite ends. All three framework materials are able to adsorb N2O, Xe and isoflurane. Whereas the framework with the widest channels is able to adsorb large quantities of the various guests from the gas phase, the frameworks with the narrower channels have superior binding enthalpies and exhibit higher levels of retention. The use of ligands in which substituents are bound to the aromatic rings of the bridging ligands offers great scope for tuning the adsorption properties of the framework materials.
  • Item
    Thumbnail Image
    Square Grid Metal-Chloranilate Networks as Robust Host Systems for Guest Sorption
    Kingsbury, CJ ; Abrahams, BF ; Auckett, JE ; Chevreau, H ; Dharma, AD ; Duyker, S ; He, Q ; Hua, C ; Hudson, TA ; Murray, KS ; Phonsri, W ; Peterson, VK ; Robson, R ; White, KF (WILEY-V C H VERLAG GMBH, 2019-04-05)
    Reaction of the chloranilate dianion with Y(NO3 )3 in the presence of Et4 N+ in the appropriate proportions results in the formation of (Et4 N)[Y(can)2 ], which consists of anionic square-grid coordination polymer sheets with interleaved layers of counter-cations. These counter-cations, which serve as squat pillars between [Y(can)2 ] sheets, lead to alignment of the square grid sheets and the subsequent generation of square channels running perpendicular to the sheets. The crystals are found to be porous and retain crystallinity following cycles of adsorption and desorption. This compound exhibits a high affinity for volatile guest molecules, which could be identified within the framework by crystallographic methods. In situ neutron powder diffraction indicates a size-shape complementarity leading to a strong interaction between host and guest for CO2 and CH4 . Single-crystal X-ray diffraction experiments indicate significant interactions between the host framework and discrete I2 or Br2 molecules. A series of isostructural compounds (cat)[MIII (X-an)2 ] with M=Sc, Gd, Tb, Dy, Ho, Er, Yb, Lu, Bi or In, cat=Et4 N, Me4 N and X-an=chloranilate, bromanilate or cyanochloranilate bridging ligands have been generated. The magnetic properties of representative examples (Et4 N)[Gd(can)2 ] and (Et4 N)[Dy(can)2 ] are reported with normal DC susceptibility but unusual AC susceptibility data noted for (Et4 N)[Gd(can)2 ].
  • Item
    Thumbnail Image
    PtS-Related {[CuI(F4TCNQII-)]-} Networks
    Abrahams, BF ; Elliott, RW ; Hudson, TA ; Robson, R (AMER CHEMICAL SOC, 2013-07)
  • Item
    Thumbnail Image
    3d-Metal derivatives of the [CuI(SO3)4]7- ion: structure and magnetism
    Abrahams, BF ; Abrahams, CT ; Haywood, MG ; Hudson, TA ; Moubaraki, B ; Murray, KS ; Robson, R (ROYAL SOC CHEMISTRY, 2012)
    The Cu(SO(3))(4)(7-) anion, which consists of a tetrahedrally coordinated Cu(I) centre coordinated to four sulfur atoms, is able to act as a multidentate ligand in discrete and infinite supramolecular species. The slow oxidation of an aqueous solution of Na(7)Cu(SO(3))(4) yields a mixed oxidation state, 2D network of composition Na(5){[Cu(II)(H(2)O)][Cu(I)(SO(3))(4)]}·6H(2)O. The addition of Cu(II) and 2,2'-bipyridine to an aqueous Na(7)Cu(SO(3))(4) solution leads to the formation of a pentanuclear complex of composition {[Cu(II)(H(2)O)(bipy)](4)[Cu(I)(SO(3))(4)]}(+); a combination of hydrogen bonding and π-π stacking interactions leads to the generation of infinite parallel channels that are occupied by disordered nitrate anions and water molecules. A pair of Cu(SO(3))(4)(7-) anions each act as a tridentate ligand towards a single Mn(II) centre when Mn(II) ions are combined with an excess of Cu(SO(3))(4)(7-). An anionic pentanuclear complex of composition {[Cu(I)(SO(3))(4)](2)[Fe(III)(H(2)O)](3)(O)} is formed when Fe(II) is added to a Cu(+)/SO(3)(2-) solution. Hydrated ferrous [Fe(H(2)O)(6)(2+)] and sodium ions act as counterions for the complexes and are responsible for the formation of an extensive hydrogen bond network within the crystal. Magnetic susceptibility studies over the temperature range 2-300 K show that weak ferromagnetic coupling occurs within the Cu(II) containing chains of Na(5){[Cu(II)(H(2)O)][Cu(I)(SO(3))(4)]}·6H(2)O, while zero coupling exists in the pentanuclear cluster {[Cu(II)(H(2)O)(bipy)](4)[Cu(I)(SO(3))(4)]}(NO(3))·H(2)O. Weak Mn(II)-O-S-O-Mn(II) antiferromagnetic coupling occurs in Na(H(2)O)(6){[Cu(I)(SO(3))(4)][Mn(II)(H(2)O)(2)](3)}, the latter formed when Mn was in excess during synthesis. The compound, Na(3)(H(2)O)(6)[Fe(II)(H(2)O)(6)](2){[Cu(I)(SO(3))(4)](2)[Fe(III)(H(2)O)](3)(O)}·H(2)O, contained trace magnetic impurities that affected the expected magnetic behaviour.