School of Chemistry - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 6 of 6
  • Item
    Thumbnail Image
    Liquid Crystallinity as a Self-Assembly Motif for High-Efficiency, Solution-Processed, Solid-State Singlet Fission Materials
    Masoomi-Godarzi, S ; Liu, M ; Tachibana, Y ; Mitchell, VD ; Goerigk, L ; Ghiggino, KP ; Smith, TA ; Jones, DJ (WILEY-V C H VERLAG GMBH, 2019-08)
    Abstract Solution and solution‐deposited thin films of the discotic liquid crystalline electron acceptor–donor–acceptor (A‐D‐A) p‐type organic semiconductor FHBC(TDPP)2, synthesized by coupling thienyl substituted diketopyrrolopyrrole (TDPP) onto a fluorenyl substituted hexa‐peri‐hexabenzocoronene (FHBC) core, are examined by ultrafast and nanosecond transient absorption spectroscopy, and time‐resolved photoluminescence studies to examine their ability to support singlet fission (SF). Grazing incidence wide‐angle X‐ray (GIWAX) studies indicate that as‐cast thin films of FHBC(TDPP)2 are “amorphous,” while hexagonal packed discotic liquid crystalline films evolve during thermal annealing. SF in as‐cast thin films is observed with an ≈150% triplet generation yield. Thermally annealing the thin films improves SF yields up to 170%. The as‐cast thin films show no long‐range order, indicating a new class of SF material where the requirement for local order and strong near neighbor coupling has been removed. Generation of long‐lived triplets (µs) suggests that these materials may also be suitable for inclusion in organic solar cells to enhance performance.
  • Item
    Thumbnail Image
    Solution-Processable, Solid State Donor-Acceptor Materials for Singlet Fission
    Masoomi-Godarzi, S ; Liu, M ; Tachibana, Y ; Goerigk, L ; Ghiggino, KP ; Smith, TA ; Jones, DJ (WILEY-V C H VERLAG GMBH, 2018-10-25)
    Abstract The exploitation of singlet fission (SF) materials in optoelectronic devices is restricted by the limited number of SF materials available and developing new organic materials that undergo singlet fission is a significant challenge. Using a new strategy based on conjugating strong donor and acceptor building blocks, the small molecule (BDT(DPP)2) and polymer (p‐BDT‐DPP) systems are designed and synthesized knowing that bisthiophene‐2,5‐dihydropyrrolo[3,4‐c]pyrrole‐1,4‐dione (DPP) has a low lying triplet energy level, which is further confirmed by time‐dependent density functional theory (TD‐DFT) calculations. TD‐DFT and natural transition orbital (NTO) analysis are conducted to gain insight into the photophysical properties and features of excited states in BDT(DPP)2, respectively. Femtosecond and nanosecond transient absorption spectroscopies are used to investigate the excited state kinetics in the synthesized compounds. Fast formation of triplet pairs in thin film of p‐BDT‐DPP and BDT(DPP)2 and the equilibrium formation of correlated triplet pairs and S1 from triplet–triplet annihilation in solution of BDT(DPP)2 are further evidence of SF in these compounds. The short triplet lifetime, as a result of fast biexcitonic recombination, provides additional support for triplet pair formation through singlet fission.
  • Item
    Thumbnail Image
    Energy Migration in Organic Solar Concentrators with a Molecularly Insulated Perylene Diimide
    Banal, JL ; Soleimaninejad, H ; Jradi, FM ; Liu, M ; White, JM ; Blakers, AW ; Cooper, MW ; Jones, DJ ; Ghiggino, KP ; Marder, SR ; Smith, TA ; Wong, WWH (AMER CHEMICAL SOC, 2016-06-23)
  • Item
    Thumbnail Image
    Emissive Molecular Aggregates and Energy Migration in Luminescent Solar Concentrators
    Banal, JL ; Zhang, B ; Jones, DJ ; Ghiggino, KP ; Wong, WWH (American Chemical Society, 2017-01-17)
    Luminescent solar concentrators (LSCs) are light harvesting devices that are ideally suited to light collection in the urban environment where direct sunlight is often not available. LSCs consist of highly luminescent compounds embedded or coated on a transparent substrate that absorb diffuse or direct solar radiation over a large area. The resulting luminescence is trapped in the waveguide by total internal reflection to the thin edges of the substrate where the concentrated light can be used to improve the performance of photovoltaic devices. The concept of LSCs has been around for several decades, and yet the efficiencies of current devices are still below expectations for commercial viability. There are two primary challenges when designing new chromophores for LSC applications. Reabsorption of dye emission by chromophores within the waveguide is a significant loss mechanism attenuating the light output of LSCs. Concentration quenching, particularly in organic dye systems, restricts the quantity of chromophores that can be incorporated in the waveguide thus limiting the light absorbed by the LSC. Frequently, a compromise between increased light harvesting of the incident light and decreasing emission quantum yield is required for most organic chromophore-based systems due to concentration quenching. The low Stokes shift of common organic dyes used in current LSCs also imposes another optimization problem. Increasing light absorption of LSCs based on organic dyes to achieve efficient light harvesting also enhances reabsorption. Ideally, a design strategy to simultaneously optimize light harvesting, concentration quenching, and reabsorption of LSC chromophores is clearly needed to address the significant losses in LSCs. Over the past few years, research in our group has targeted novel dye structures that address these primary challenges. There is a common perception that dye aggregates are to be avoided in LSCs. It became apparent in our studies that aggregates of chromophores exhibiting aggregation-induced emission (AIE) behavior are attractive candidates for LSC applications. Strategic application of AIE chromophores has led to the development of the first organic-based transparent solar concentrator that harvests UV light as well as the demonstration of reabsorption reduction by taking advantage of energy migration processes between chromophores. Further developments led us to the application of perylene diimides using an energy migration/energy transfer approach. To prevent concentration quenching, a molecularly insulated perylene diimide with bulky substituents attached to the imide positions was designed and synthesized. By combining the insulated perylene diimide with a commercial perylene dye as an energy donor–acceptor emitter pair, detrimental luminescence reabsorption was reduced while achieving a high chromophore concentration for efficient light absorption. This Account reviews and reinspects some of our recent work and the improvements in the field of LSCs.
  • Item
    Thumbnail Image
    Highly Fluorescent Molecularly Insulated Perylene Diimides: Effect of Concentration on Photophysical Properties
    Zhang, B ; Soleimaninejad, H ; Jones, DJ ; White, JM ; Ghiggino, KP ; Smith, TA ; Wong, WWH (AMER CHEMICAL SOC, 2017-10-10)
  • Item
    Thumbnail Image
    Aggregation-induced emission-mediated spectral downconversion in luminescent solar concentrators
    Zhang, B ; Banal, JL ; Jones, DJ ; Tang, BZ ; Ghiggino, KP ; Wong, WWH (Royal Society of Chemistry, 2018-03-01)
    The light-harvesting efficiency of luminescent solar concentrators (LSCs) is encumbered by reabsorption of emission and concentration quenching. Energy transfer from a high-concentration donor to a low-concentration energy trap can reduce reabsorption losses while maintaining efficient light collection. Emissive aggregates enable this approach by reducing the impact of concentration quenching, which is detrimental to the entire energy transfer process. Here we describe a LSC that utilizes emissive aggregates as energy-transfer pairs for downconversion. We characterize the photophysics of a benzothiadiazole-based emissive aggregate, PITBT-TPE, that complements a highly emissive donor, DPATPAN, and functions as a highly emissive energy-transfer acceptor even at high concentrations in excess of 180 mM in the PMMA matrix. Monte Carlo simulations of LSCs that leverage these emissive aggregates as energy-transfer pairs predicted notable optical efficiencies at large concentrator dimensions. We demonstrate for the first time a LSC that utilizes donor and acceptor AIE chromophores to reduce reabsorption.