School of Chemistry - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 9 of 9
  • Item
    Thumbnail Image
    A sandwich-like structural model revealed for quasi-2D perovskite films
    Zheng, F ; Hall, CR ; Angmo, D ; Zuo, C ; Rubanov, S ; Wen, Z ; Bradley, SJ ; Hao, X-T ; Gao, M ; Smith, TA ; Ghiggino, KP (Royal Society of Chemistry, 2021-04-28)
    The excellent performance and stability of perovskite solar cells (PSCs) based on quasi-2D Ruddlesden–Popper perovskites (RPPs) holds promise for their commercialization. Further improvement in the performance of 2D PSCs requires a detailed understanding of the microstructure of the quasi-2D perovskite films. Based on scanning transmission electron microscopy (STEM), time-resolved photoluminescence, and transient absorption measurements, a new sandwich-like structural model is proposed to describe the phase distribution of RPPs. In contrast to the conventional gradient distribution, it is found that small-n RPPs are sandwiched between large-n RPP phase layers at the front and back sides owing to crystallization initiated from both interfaces during film formation. This sandwich-like distribution profile facilitates excitons funneling from the film interior to both surfaces for dissociation while free carriers transport via large-n channels that permeate the film to ensure efficient charge collection by the corresponding electrodes, which is favorable for high-performance photovoltaics. This discovery provides a new fundamental understanding of the operating principles of 2D PSCs and has valuable implications for the design and optimization strategies of optoelectronic devices based on quasi-2D RPPs films.
  • Item
    Thumbnail Image
    Brownian Tree‐Shaped Dendrites in Quasi‐2D Perovskite Films and Their Impact on Photovoltaic Performance
    Zheng, F ; Angmo, D ; Hall, CR ; Rubanov, S ; Yuan, F ; Laird, JS ; Gao, M ; Smith, TA ; Ghiggino, KP (Wiley, 2022-05)
    Quasi-2D Ruddlesden–Popper perovskites (RPPs) are candidates for constructing perovskite solar cells (PSCs) with superior stability due to their tolerance to the external environment. Fully understanding the film growth mechanism and structure is crucial to further improve the performance of 2D-PSCs while maintaining device stability. In this work, the origin of Brownian tree-shaped dendrites formed in hot-cast methylammonium chloride (MACl)-doped BA2MAn−1PbnI3n+1 ( = 5) quasi-2D perovskite films are reported. Investigations based on optical, electronic, atomic force, and fluorescence microscopies reveal that the dendrites are assembled from large-n RPPs-dominated grains, while the nondendritic film area is composed of small-n RPPs grains and associated with film surface pits caused by the evaporation of MACl. It is proposed that these dendrites are grown by the diffusion-limited aggregation of the MA-rich intermediate phase domains that initially crystallize from the precursor. The formation of these dendrites in quasi-2D perovskite films upon MACl doping is accompanied by improved organization and crystallinity of the 2D RPPs, which benefits the photovoltaic performance. This work provides new insights into the formation mechanism of quasi-2D perovskite films that should assist device engineering strategies to further improve the performance of 2D PSCs.
  • Item
    Thumbnail Image
    Spontaneous Formation of a Ligand-Based 2D Capping Layer on the Surface of Quasi-2D Perovskite Films
    Zheng, F ; Raeber, T ; Rubanov, S ; Lee, C ; Seeber, A ; Hall, C ; Smith, TA ; Gao, M ; Angmo, D ; Ghiggino, KP (AMER CHEMICAL SOC, 2022-11-23)
    Two-dimensional (2D) Ruddlesden-Popper phase perovskites (RPPs) are attracting growing attention for photovoltaic applications due to their enhanced stability compared to three-dimensional (3D) perovskites. The superior tolerance of 2D RPPs films to moisture and oxygen is mainly attributed to the hydrophobic nature of the introduced long-chain spacer cations (ligands). In this work, it is revealed that a thin capping layer, consisting of self-assembled butylammonium ligands, is spontaneously formed on the top surface of a quasi-2D perovskite film prepared by conventional one-step hot casting. Based on morphological and crystallographic analyses of both the top/bottom surfaces and the interior of quasi-2D perovskite films, the formation process of the 2D capping layer and the assembly of RPPs, comprising both large and small slab thickness (large-n, small-n), is elucidated. The vertical orientation of RPPs that is required for sufficient charge transport for 2D perovskite solar cells (PSCs) is further verified. We propose that the surface capping layer is directly responsible for the long-term stability of 2D PSCs. This work provides detailed insight into the microstructure of quasi-2D RPPs films that should assist the development of strategies for unlocking the full potential of 2D perovskites for high-performance PSCs and other solid-state electronic devices.
  • Item
    Thumbnail Image
    Brownian Tree-Shaped Dendrites in Quasi-2D Perovskite Films and Their Impact on Photovoltaic Performance
    Zheng, F ; Angmo, D ; Hall, CR ; Rubanov, S ; Yuan, F ; Laird, JS ; Gao, M ; Smith, TA ; Ghiggino, KP (WILEY, 2022-05)
    Abstract Quasi‐2D Ruddlesden–Popper perovskites (RPPs) are candidates for constructing perovskite solar cells (PSCs) with superior stability due to their tolerance to the external environment. Fully understanding the film growth mechanism and structure is crucial to further improve the performance of 2D‐PSCs while maintaining device stability. In this work, the origin of Brownian tree‐shaped dendrites formed in hot‐cast methylammonium chloride (MACl)‐doped BA2MAn−1PbnI3n+1 (<n> = 5) quasi‐2D perovskite films are reported. Investigations based on optical, electronic, atomic force, and fluorescence microscopies reveal that the dendrites are assembled from large‐n RPPs‐dominated grains, while the nondendritic film area is composed of small‐n RPPs grains and associated with film surface pits caused by the evaporation of MACl. It is proposed that these dendrites are grown by the diffusion‐limited aggregation of the MA‐rich intermediate phase domains that initially crystallize from the precursor. The formation of these dendrites in quasi‐2D perovskite films upon MACl doping is accompanied by improved organization and crystallinity of the 2D RPPs, which benefits the photovoltaic performance. This work provides new insights into the formation mechanism of quasi‐2D perovskite films that should assist device engineering strategies to further improve the performance of 2D PSCs.
  • Item
    Thumbnail Image
    Improved compatibility of DDAB-functionalized graphene oxide with a conjugated polymer by isocyanate treatment
    Zheng, F ; Yang, X-Y ; Bi, P-Q ; Niu, M-S ; Lv, C-K ; Feng, L ; Hao, X-T ; Ghiggino, KP (Royal Society of Chemistry, 2017-01-01)
    2-Chlorophenyl isocyanate (CI) reacts with didodecyl dimethyl ammonium bromide (DDAB) functionalized graphene oxide (DDAB-GO) dispersed in ortho-dichlorobenzene under mild conditions. The CI treatment complements DDAB functionalization to further decrease the hydrophilicity of pristine GO sheets. The resulting CI–DDAB-GO exhibits improved compatibility with the conjugated polymer poly(3-hexylthiophene) (P3HT), compared to DDAB-GO. CI–DDAB-GO sheets can be homogeneously dispersed when blended with P3HT, resulting in an improved morphology compared to P3HT:DDAB-GO composites. The incorporation of CI–DDAB-GO can effectively reduce the dark current of photo-diodes based on P3HT composites, showing potential to enhance the performance of electronic devices based on conjugated polymer composites.
  • Item
    Thumbnail Image
    Triggering the Passivation Effect of Potassium Doping in Mixed-Cation Mixed-Halide Perovskite by Light Illumination
    Zheng, F ; Chen, W ; Bu, T ; Ghiggino, KP ; Huang, F ; Cheng, Y ; Tapping, P ; Kee, TW ; Jia, B ; Wen, X (Wiley, 2019-06-01)
    Potassium (K+) doping has been recently discovered as an effective route to suppress hysteresis and improve the performance stability of perovskite solar cells. However, the mechanism of these K+ doping effects is still under debate, and rationalization of the improved performance in these perovskites is needed. Herein, the photoluminescence (PL) properties and device performance of mixed‐cation mixed‐halide perovskite are dynamically monitored with and without K+ doping under bias light illumination via a confocal fluorescence microscope, together with ultrafast transient absorption as well as time‐dependent and time‐resolved PL measurements. It is demonstrated that illumination is essential to trigger the passivation effect of K+ by forming KBr‐like compounds, leading to the elimination of interface trapping defects and suppression of mobile ion migration, thus resulting in improved power conversion efficiency and negligible current–voltage hysteresis of solar cells. This work provides novel insight into the hysteresis suppression upon K+ doping and highlights the significance of light illumination when using this protocol.
  • Item
    Thumbnail Image
    Crystallisation control of drop-cast quasi-2D/3D perovskite layers for efficient solar cells
    Zuo, C ; Scully, AD ; Tan, WL ; Zheng, F ; Ghiggino, KP ; Vak, D ; Weerasinghe, H ; McNeill, CR ; Angmo, D ; Chesman, ASR ; Gao, M (SPRINGERNATURE, 2020-06-05)
    Abstract Introducing layered quasi-2D perovskite phases into a conventional 3D perovskite light-absorbing matrix is a promising strategy for overcoming the limited environmental stability of 3D perovskite solar cells. Here, we present a simple drop-casting method for preparing hybrid perovskite films comprising both quasi-2D and quasi-3D phases, formed using phenylethylammonium or iso-butylammonium as spacer cations. The film morphology, phase purity, and crystal orientation of the hybrid quasi-2D/3D perovskite films are improved significantly by applying a simple N2 blow-drying step, together with inclusion of methylammonium chloride as an additive. An enhanced power conversion efficiency of 16.0% is achieved using an iso-butylammonium-based quasi-2D/3D perovskite layer which, to our knowledge, is the highest recorded to date for a quasi-2D/3D perovskite solar cells containing a non-spin-cast perovskite layer prepared under ambient laboratory conditions.
  • Item
    Thumbnail Image
    Highly efficient radiative recombination in intrinsically zero-dimensional perovskite micro-crystals prepared by thermally-assisted solution-phase synthesis
    Xu, W-L ; Bradley, SJ ; Xu, Y ; Zheng, F ; Hall, CR ; Ghiggino, KP ; Smith, TA (ROYAL SOC CHEMISTRY, 2020-12-07)
    Zero-dimensional (0D) quantum confinement can be achieved in perovskite materials by the confinement of electron and hole states to single PbX6 4- perovskite octahedra. In this work, 0D perovskite (Cs4PbBr6) micro-crystals were prepared by a simple thermally-assisted solution method and thoroughly characterized. The micro-crystals show a high level of crystallinity and a high photoluminescence quantum yield of 45%. The radiative recombination coefficient of the 0D perovskite micro-crystals, 1.5 × 10-8 s-1 cm3, is two orders of magnitude higher than that of typical three-dimensional perovskite and is likely a strong contributing factor to the high emission efficiency of 0D perovskite materials. Temperature dependent luminescence measurements provide insight into the role of thermally-activated trap states. Spatially resolved measurements on single 0D perovskite micro-crystals reveal uniform photoluminescence intensity and emission decay behaviour suggesting the solution-based fabrication method yields a high-quality and homogenous single-crystal material. Such uniform emission reflects the intrinsic 0D nature of the material, which may be beneficial to device applications.
  • Item
    Thumbnail Image
    Millimeter-Sized Clusters of Triple Cation Perovskite Enables Highly Efficient and Reproducible Roll-to-Roll Fabricated Inverted Perovskite Solar Cells
    Othman, M ; Zheng, F ; Seeber, A ; Chesman, ASR ; Scully, AD ; Ghiggino, KP ; Gao, M ; Etheridge, J ; Angmo, D (WILEY-V C H VERLAG GMBH, 2022-03)
    Abstract The high‐power conversion efficiencies (PCEs) of perovskite solar cells (PSCs) on lab‐scale devices trigger the need to develop scalable manufacturing processes to accelerate their commercialization transition. A roll‐to‐roll (R2R) vacuum‐free printing on flexible substrates allows for high‐volume and low‐cost manufacturing which is especially well‐suited for PSCs due to its solution processibility and low‐temperature annealing requirements. Herein, a facile hot deposition technique is reported to fabricate triple‐cation (Cs0.07FA0.79MA0.14Pb(I0.83Br0.17)3) perovskite films in an ambient environment using a R2R slot‐die coating method. This perovskite composition, whilst being most studied in lab devices due to its high efficiency and stability, has not been applied in R2R fabrication thus far. The demonstrated R2R slot‐die coated flexible PSCs achieve stabilized PCE reaching 12% at maximum power point in inverted “p‐i‐n” architectures, the highest efficiency reported to date for R2R inverted PSCs. To achieve this, the underlying hole transport layer (poly(3,4‐ethylenedioxythiophene):polystyrene sulfonate) is modified with guanidinium iodide additive which leads to the formation of large millimeter‐sized perovskite clusters, improved perovskite crystallinity, and enhanced charge‐transfer efficiency. This study highlights the potential of the facile hot‐deposition method while providing critical insights into the role of interfacial engineering in eliminating performance losses and fabricating efficient printed flexible PSCs.