School of Chemistry - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 17
  • Item
    Thumbnail Image
    Highly Efficient Luminescent Solar Concentrators by Selective Alignment of Donor-Emitter Fluorophores
    Zhang, B ; Gao, C ; Soleimaninejad, H ; White, JM ; Smith, TA ; Jones, DJ ; Ghiggino, KP ; Wong, WWH (AMER CHEMICAL SOC, 2019-04-23)
    Vertically aligning fluorophores to the surface of a waveguide is known to be an effective approach to improve the optical quantum efficiency (OQE) of luminescent solar concentrators (LSCs). While the chromophore alignment assists waveguiding of the emitted photons to the LSC edges, it also significantly reduces the light-harvesting properties of the LSC. We report here a fluorophore pair consisting of a sphere-shaped energy donor and a rod-shaped emitter that was incorporated in LSCs to provide selective fluorophore alignment to address the reduced incident-light absorption issue. A liquid-crystal polymer matrix was used to perpendicularly align the rod-shaped acceptors to a favorable orientation for light guiding, while the sphere-shaped donor was randomly oriented to maintain its light-absorbing properties. The OQE of LSC devices with this selectively aligned donor-acceptor fluorophore system is 78% without significant loss of light-harvesting capability.
  • Item
    Thumbnail Image
    Additive-Morphology Interplay and Loss Channels in "All-Small-Molecule" Bulk-heterojunction (BHJ) Solar Cells with the Nonfullerene Acceptor IDTTBM
    Liang, R-Z ; Babics, M ; Seitkhan, A ; Wang, K ; Geraghty, PB ; Lopatin, S ; Cruciani, F ; Firdaus, Y ; Caporuscio, M ; Jones, DJ ; Beaujuge, PM (WILEY-V C H VERLAG GMBH, 2018-02-14)
    Abstract Achieving efficient bulk‐heterojunction (BHJ) solar cells from blends of solution‐processable small‐molecule (SM) donors and acceptors is proved particularly challenging due to the complexity in obtaining a favorable donor–acceptor morphology. In this report, the BHJ device performance pattern of a set of analogous, well‐defined SM donors—DR3TBDTT (DR3), SMPV1, and BTR—used in conjunction with the SM acceptor IDTTBM is examined. Examinations show that the nonfullerene “All‐SM” BHJ solar cells made with DR3 and IDTTBM can achieve power conversion efficiencies (PCEs) of up to ≈4.5% (avg. 4.0%) when the solution‐processing additive 1,8‐diiodooctane (DIO, 0.8% v/v) is used in the blend solutions. The figures of merit of optimized DR3:IDTTBM solar cells contrast with those of “as‐cast” BHJ devices from which only modest PCEs <1% can be achieved. Combining electron energy loss spectrum analyses in scanning transmission electron microscopy mode, carrier transport measurements via “metal‐insulator‐semiconductor carrier extraction” methods, and systematic recombination examinations by light‐dependence and transient photocurrent analyses, it is shown that DIO plays a determining role—establishing a favorable lengthscale for the phase‐separated SM donor–acceptor network and, in turn, improving the balance in hole/electron mobilities and the carrier collection efficiencies overall.
  • Item
    Thumbnail Image
    Reduced Recombination in High Efficiency Molecular Nematic Liquid Crystalline: Fullerene Solar Cells
    Armin, A ; Subbiah, J ; Stolterfoht, M ; Shoaee, S ; Xiao, Z ; Lu, S ; Jones, DJ ; Meredith, P (WILEY-V C H VERLAG GMBH, 2016-11-23)
    Bimolecular recombination in bulk heterojunction organic solar cells is the process by which nongeminate photogenerated free carriers encounter each other, and combine to form a charge transfer (CT) state which subsequently relaxes to the ground state. It is governed by the diffusion of the slower and faster carriers toward the electron donor–acceptor interface. In an increasing number of systems, the recombination rate constant is measured to be lower than that predicted by Langevin's model for relative Brownian motion and the capture of opposite charges. This study investigates the dynamics of charge generation, transport, and recombination in a nematic liquid crystalline donor:fullerene acceptor system that gives solar cells with initial power conversion efficiencies of >9.5%. Unusually, and advantageously from a manufacturing perspective, these efficiencies are maintained in junctions thicker than 300 nm. Despite finding imbalanced and moderate carrier mobilities in this blend, strongly suppressed bimolecular recombination is observed, which is ≈150 times less than predicted by Langevin theory, or indeed, more recent and advanced models that take into account the domain size and the spatial separation of electrons and holes. The suppressed bimolecular recombination arises from the fact that ground‐state decay of the CT state is significantly slower than dissociation.
  • Item
    Thumbnail Image
    Liquid Crystallinity as a Self-Assembly Motif for High-Efficiency, Solution-Processed, Solid-State Singlet Fission Materials
    Masoomi-Godarzi, S ; Liu, M ; Tachibana, Y ; Mitchell, VD ; Goerigk, L ; Ghiggino, KP ; Smith, TA ; Jones, DJ (WILEY-V C H VERLAG GMBH, 2019-08)
    Abstract Solution and solution‐deposited thin films of the discotic liquid crystalline electron acceptor–donor–acceptor (A‐D‐A) p‐type organic semiconductor FHBC(TDPP)2, synthesized by coupling thienyl substituted diketopyrrolopyrrole (TDPP) onto a fluorenyl substituted hexa‐peri‐hexabenzocoronene (FHBC) core, are examined by ultrafast and nanosecond transient absorption spectroscopy, and time‐resolved photoluminescence studies to examine their ability to support singlet fission (SF). Grazing incidence wide‐angle X‐ray (GIWAX) studies indicate that as‐cast thin films of FHBC(TDPP)2 are “amorphous,” while hexagonal packed discotic liquid crystalline films evolve during thermal annealing. SF in as‐cast thin films is observed with an ≈150% triplet generation yield. Thermally annealing the thin films improves SF yields up to 170%. The as‐cast thin films show no long‐range order, indicating a new class of SF material where the requirement for local order and strong near neighbor coupling has been removed. Generation of long‐lived triplets (µs) suggests that these materials may also be suitable for inclusion in organic solar cells to enhance performance.
  • Item
    Thumbnail Image
    Solution-Processable, Solid State Donor-Acceptor Materials for Singlet Fission
    Masoomi-Godarzi, S ; Liu, M ; Tachibana, Y ; Goerigk, L ; Ghiggino, KP ; Smith, TA ; Jones, DJ (WILEY-V C H VERLAG GMBH, 2018-10-25)
    Abstract The exploitation of singlet fission (SF) materials in optoelectronic devices is restricted by the limited number of SF materials available and developing new organic materials that undergo singlet fission is a significant challenge. Using a new strategy based on conjugating strong donor and acceptor building blocks, the small molecule (BDT(DPP)2) and polymer (p‐BDT‐DPP) systems are designed and synthesized knowing that bisthiophene‐2,5‐dihydropyrrolo[3,4‐c]pyrrole‐1,4‐dione (DPP) has a low lying triplet energy level, which is further confirmed by time‐dependent density functional theory (TD‐DFT) calculations. TD‐DFT and natural transition orbital (NTO) analysis are conducted to gain insight into the photophysical properties and features of excited states in BDT(DPP)2, respectively. Femtosecond and nanosecond transient absorption spectroscopies are used to investigate the excited state kinetics in the synthesized compounds. Fast formation of triplet pairs in thin film of p‐BDT‐DPP and BDT(DPP)2 and the equilibrium formation of correlated triplet pairs and S1 from triplet–triplet annihilation in solution of BDT(DPP)2 are further evidence of SF in these compounds. The short triplet lifetime, as a result of fast biexcitonic recombination, provides additional support for triplet pair formation through singlet fission.
  • Item
    Thumbnail Image
    Development of a High-Performance Donor Acceptor Conjugated Polymer: Synergy in Materials and Device Optimization
    Gao, M ; Subbiah, J ; Geraghty, PB ; Chen, M ; Purushothaman, B ; Chen, X ; Qin, T ; Vak, D ; Scholes, FH ; Watkins, SE ; Skidmore, M ; Wilson, GJ ; Holmes, AB ; Jones, DJ ; Wong, WWH (AMER CHEMICAL SOC, 2016-05-24)
  • Item
    Thumbnail Image
    Controlled Synthesis of Well-Defined Semiconducting Brush Polymers
    van As, D ; Subbiah, J ; Jones, DJ ; Wong, WWH (WILEY-V C H VERLAG GMBH, 2016-02)
    Well‐defined semiconducting bottlebrush polymers are prepared using controlled polymerization methods. The electron donor semiconductor poly(3‐hexylthiophene), P3HT, is synthesized using Grignard metathesis polymerization. With appropriate norbornene end caps, the P3HT macromonomers are used to form the bottlebrush material via ring opening metathesis polymerization. The bottlebrush polymers are characterized and compared with linear P3HT materials, as well as high‐molecular‐weight commercial P3HT. It is found that longer polythiophene chains impart better semiconducting properties resulting in higher solar‐cell device performance. image
  • Item
    Thumbnail Image
    Energy Migration in Organic Solar Concentrators with a Molecularly Insulated Perylene Diimide
    Banal, JL ; Soleimaninejad, H ; Jradi, FM ; Liu, M ; White, JM ; Blakers, AW ; Cooper, MW ; Jones, DJ ; Ghiggino, KP ; Marder, SR ; Smith, TA ; Wong, WWH (AMER CHEMICAL SOC, 2016-06-23)
  • Item
    Thumbnail Image
    The synthesis and purification of amphiphilic conjugated donor-acceptor block copolymers
    Mitchell, VD ; Wong, WWH ; Thelakkat, M ; Jones, DJ (NATURE PUBLISHING GROUP, 2017-01)
  • Item
    Thumbnail Image
    A Green Route to Conjugated Polyelectrolyte Interlayers for High‐Performance Solar Cells
    Subbiah, J ; Mitchell, VD ; Hui, NKC ; Jones, DJ ; Wong, WWH (Wiley, 2017-07-10)
    Abstract Synthesis of fluorene‐based conjugated polyelectrolytes was achieved via Suzuki polycondensation in water and completely open to air. The polyelectrolytes were conveniently purified by dialysis and analysis of the materials showed properties expected for fluorene‐based conjugated polyelectrolytes. The materials were then employed in solar cell devices as an interlayer in conjunction with ZnO. The double interlayer led to enhanced power conversion efficiency of 10.75 % and 15.1 % for polymer and perovskite solar cells, respectively.