School of Chemistry - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 6 of 6
  • Item
    Thumbnail Image
    Trace residue identification, characterization, and longitudinal monitoring of the novel synthetic opioid β-U10, from discarded drug paraphernalia
    West, H ; Fitzgerald, JL ; Hopkins, KL ; Leeming, MG ; DiRago, M ; Gerostamoulos, D ; Clark, N ; Dietze, P ; White, JM ; Ziogas, J ; Reid, GE (WILEY, 2022-09)
    Empirical data regarding dynamic alterations in illicit drug supply markets in response to the COVID-19 pandemic, including the potential for introduction of novel drug substances and/or increased poly-drug combination use at the "street" level, that is, directly proximal to the point of consumption, are currently lacking. Here, a high-throughput strategy employing ambient ionization-mass spectrometry is described for the trace residue identification, characterization, and longitudinal monitoring of illicit drug substances found within >6,600 discarded drug paraphernalia (DDP) samples collected during a pilot study of an early warning system for illicit drug use in Melbourne, Australia from August 2020 to February 2021, while significant COVID-19 lockdown conditions were imposed. The utility of this approach is demonstrated for the de novo identification and structural characterization of β-U10, a previously unreported naphthamide analog within the "U-series" of synthetic opioid drugs, including differentiation from its α-U10 isomer without need for sample preparation or chromatographic separation prior to analysis. Notably, β-U10 was observed with 23 other drug substances, most commonly in temporally distinct clusters with heroin, etizolam, and diphenhydramine, and in a total of 182 different poly-drug combinations. Longitudinal monitoring of the number and weekly "average signal intensity" (ASI) values of identified substances, developed here as a semi-quantitative proxy indicator of changes in availability, relative purity and compositions of street level drug samples, revealed that increases in the number of identifications and ASI for β-U10 and etizolam coincided with a 50% decrease in the number of positive detections and an order of magnitude decrease in the ASI for heroin.
  • Item
    Thumbnail Image
    Type IX Secretion System Cargo Proteins Are Glycosylated at the C Terminus with a Novel Linking Sugar of the Wbp/Vim Pathway
    Veith, PD ; Shoji, M ; O'Hair, RAJ ; Leeming, MG ; Nie, S ; Glew, MD ; Reid, GE ; Nakayama, K ; Reynolds, EC ; Trent, MS (AMER SOC MICROBIOLOGY, 2020-09-01)
    Porphyromonas gingivalis and Tannerella forsythia use the type IX secretion system to secrete cargo proteins to the cell surface where they are anchored via glycolipids. In P. gingivalis, the glycolipid is anionic lipopolysaccharide (A-LPS), of partially known structure. Modified cargo proteins were deglycosylated using trifluoromethanesulfonic acid and digested with trypsin or proteinase K. The residual modifications were then extensively analyzed by tandem mass spectrometry. The C terminus of each cargo protein was amide-bonded to a linking sugar whose structure was deduced to be 2-N-seryl, 3-N-acetylglucuronamide in P. gingivalis and 2-N-glycyl, 3-N-acetylmannuronic acid in T. forsythia The structures indicated the involvement of the Wbp pathway to produce 2,3-di-N-acetylglucuronic acid and a WbpS amidotransferase to produce the uronamide form of this sugar in P. gingivalis The wbpS gene was identified as PGN_1234 as its deletion resulted in the inability to produce the uronamide. In addition, the P. gingivalisvimA mutant which lacks A-LPS was successfully complemented by the T. forsythiavimA gene; however, the linking sugar was altered to include glycine rather than serine. After removal of the acetyl group at C-2 by the putative deacetylase, VimE, VimA presumably transfers the amino acid to complete the biosynthesis. The data explain all the enzyme activities required for the biosynthesis of the linking sugar accounting for six A-LPS-specific genes. The linking sugar is therefore the key compound that enables the attachment of cargo proteins in P. gingivalis and T. forsythia We propose to designate this novel linking sugar biosynthetic pathway the Wbp/Vim pathway.IMPORTANCEPorphyromonas gingivalis and Tannerella forsythia, two pathogens associated with severe gum disease, use the type IX secretion system (T9SS) to secrete and attach toxic arrays of virulence factor proteins to their cell surfaces. The proteins are tethered to the outer membrane via glycolipid anchors that have remained unidentified for more than 2 decades. In this study, the first sugar molecules (linking sugars) in these anchors are identified and found to be novel compounds. The novel biosynthetic pathway of these linking sugars is also elucidated. A diverse range of bacteria that do not have the T9SS were found to have the genes for this pathway, suggesting that they may synthesize similar linking sugars for utilization in different systems. Since the cell surface attachment of virulence factors is essential for virulence, these findings reveal new targets for the development of novel therapies.
  • Item
    Thumbnail Image
    Surface-Confined Amorphous Films from Metal-Coordinated Simple Phenolic Ligands
    Rahim, MA ; Kempe, K ; Muellner, M ; Ejima, H ; Ju, Y ; van Koeverden, MP ; Suma, T ; Braunger, JA ; Leeming, MG ; Abrahams, BF ; Caruso, F (AMER CHEMICAL SOC, 2015-08-25)
    Coordination chem. of natural polyphenols and transition metals allows rapid self-assembly of conformal coatings on diverse substrates. Herein, we report that this coordination-driven self-assembly process applies to simple phenolic mols. with monotopic or ditopic chelating sites (as opposed to macromol., multitopic polyphenols), leading to surface-confined amorphous films upon metal coordination. Films fabricated from gallic acid, pyrogallol, and pyrocatechol, which are the major monomeric building blocks of polyphenols, have been studied in detail. Pyrocatechol, with one vicinal diol group (i.e., bidentate), has been obsd. to be the limiting case for such assembly. This study expands the toolbox of available phenolic ligands for the formation of surface-confined amorphous films, which may find application in catalysis, energy, optoelectronics, and the biomedical sciences. [on SciFinder(R)]
  • Item
    Thumbnail Image
    High-Resolution Twin-Ion Metabolite Extraction (HiTIME) Mass Spectrometry: Nontargeted Detection of Unknown Drug Metabolites by Isotope Labeling, Liquid Chromatography Mass Spectrometry, and Automated High-Performance Computing
    Leeming, MG ; Isaac, AP ; Pope, BJ ; Cranswick, N ; Wright, CE ; Ziogas, J ; O'Hair, RAJ ; Donald, WA (AMER CHEMICAL SOC, 2015-04-21)
    The metabolic fate of a compound can often determine the success of a new drug lead. Thus, significant effort is directed toward identifying the metabolites formed from a given molecule. Here, an automated and nontargeted procedure is introduced for detecting drug metabolites without authentic metabolite standards via the use of stable isotope labeling, liquid chromatography mass spectrometry (LC/MS), and high-performance computing. LC/MS of blood plasma extracts from rats that were administered a 1:1 mixture of acetaminophen (APAP) and (13)C6-APAP resulted in mass spectra that contained "twin" ions for drug metabolites that were not detected in control spectra (i.e., no APAP administered). Because of the development of a program (high-resolution twin-ion metabolite extraction; HiTIME) that can identify twin-ions in high-resolution mass spectra without centroiding (i.e., reduction of mass spectral peaks to single data points), 9 doublets corresponding to APAP metabolites were identified. This is nearly twice that obtained by use of existing programs that make use of centroiding to reduce computational cost under these conditions with a quadrupole time-of-flight mass spectrometer. By a manual search for all reported APAP metabolite ions, no additional twin-ion signals were assigned. These data indicate that all the major metabolites of APAP and multiple low-abundance metabolites (e.g., acetaminophen hydroxy- and methoxysulfate) that are rarely reported were detected. This methodology can be used to detect drug metabolites without prior knowledge of their identity. HiTIME is freely available from https://github.com/bjpop/HiTIME .
  • Item
    Thumbnail Image
    What Are the Potential Sites of Protein Arylation by N-Acetyl-p-benzoquinone Imine (NAPQI)?
    Leeming, MG ; Gamon, LF ; Wille, U ; Donald, WA ; O'Hair, RAJ (AMER CHEMICAL SOC, 2015-11)
    Acetaminophen (paracetamol, APAP) is a safe and widely used analgesic medication when taken at therapeutic doses. However, APAP can cause potentially fatal hepatotoxicity when taken in overdose or in patients with metabolic irregularities. The production of the electrophilic and putatively toxic compound N-acetyl-p-benzoquinone imine (NAPQI), which cannot be efficiently detoxicated at high doses, is implicated in APAP toxicity. Numerous studies have identified that excess NAPQI can form covalent linkages to the thiol side chains of cysteine residues in proteins; however, the reactivity of NAPQI toward other amino acid side chains is largely unexplored. Here, we report a survey of the reactivity of NAPQI toward 11 N-acetyl amino acid methyl esters and four peptides. (1)H NMR analysis reveals that NAPQI forms covalent bonds to the side-chain functional groups of cysteine, methionine, tyrosine, and tryptophan residues. Analogous reaction products were observed when NAPQI was reacted with synthetic model peptides GAIL-X-GAILR for X = Cys, Met, Tyr, and Trp. Tandem mass spectrometry peptide sequencing showed that the NAPQI modification sites are located on the "X" residue in each case. However, when APAP and the GAIL-X-GAILR peptide were incubated with rat liver microsomes that contain many metabolic enzymes, NAPQI formed by oxidative metabolism reacted with GAIL-C-GAILR exclusively. For the peptides where X = Met, Tyr, and Trp, competing reactions between NAPQI and alternative nucleophiles precluded arylation of the target peptide by NAPQI. Although Cys residues are favorably targeted under these conditions, these data suggest that NAPQI can, in principle, also damage proteins at Met, Tyr, and Trp residues.
  • Item
    Thumbnail Image
    Mobile Proton Triggered Radical Fragmentation of Nitroarginine Containing Peptides
    Leeming, MG ; White, JM ; O'Hair, RAJ ; Donald, WA (SPRINGER, 2014-03)
    Protonated nitroarginine, [R(NO2) + H](+), which contains the nitroguanidine 'explosophore,' undergoes homolytic N - N nitro-imine bond cleavage to expel NO2(•) and form a radical cation of arginine in high yield (100% relative abundance) upon low-energy collision-induced dissociation (CID). Other ionization states of nitroarginine, including [R(NO2) - H](-), and a fixed-charge derivative of nitroarginine do not expel NO2(•) (<1%), but instead dissociate via heterolytic bond cleavage with abundant losses of small molecules (N2O and H2N2O2) from the nitroguanidine group. The effects of proton mobility on the CID reactions of nitroarginine containing peptides was investigated for peptide derivatives of leucine enkephalin, including XYGGFLR(NO2), X = D, G, K, and R, by examining the different protonation states: [M - H](-); [M + H](+); and [M + 2H](2+). For [M + H](+) containing the less basic N-terminal residues (X = D, G) and all [M + 2H](2+), mobile proton fragmentation reactions that result in peptide sequence ions dominate. In contrast, for peptides containing the basic N-terminal residues (R and K), the CID spectra of both the [M - H](-) and [M + H](+) are dominated by the losses of small even-electron neutrals from the nitroarginine side-chain. The fraction of nitroguanidine directed fragmentation of the nitroarginine side chain that results in bond homolysis to form [XYGGFLR](+•) by expulsion of NO2(•) increases by more than 10 times as the protonation state changes from [M - H](-) (<10%) to [M + 2H](2+) (ca. 90%) and by about four times as the acidity of the [M + H](+) N-terminal residue increases from R (19.0%) to D (76.5%). These results indicate that protonated peptides containing nitroarginine can undergo non-canonical mobile proton triggered radical fragmentation.