School of Chemistry - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 6 of 6
  • Item
    Thumbnail Image
    A Census of Hsp70-Mediated Proteome Solubility Changes upon Recovery from Heat Stress
    Sui, X ; Cox, D ; Nie, S ; Reid, GE ; Hatters, DM (AMER CHEMICAL SOC, 2022-05-06)
    Eukaryotic cells respond to heat shock through several regulatory processes including upregulation of stress responsive chaperones and reversible shutdown of cellular activities through formation of protein assemblies. However, the underlying regulatory mechanisms of the recovery of these heat-induced protein assemblies remain largely elusive. Here, we measured the proteome abundance and solubility changes during recovery from heat shock in the mouse Neuro2a cell line. We found that prefoldins and translation machinery are rapidly down-regulated as the first step in the heat shock response. Analysis of proteome solubility reveals that a rapid mobilization of protein quality control machineries, along with changes in cellular energy metabolism, translational activity, and actin cytoskeleton are fundamental to the early stress responses. In contrast, longer term adaptation to stress involves renewal of core cellular components. Inhibition of the Hsp70 family, pivotal for the heat shock response, selectively and negatively affects the ribosomal machinery and delays the solubility recovery of many nuclear proteins. ProteomeXchange: PXD030069.
  • Item
    No Preview Available
    Widespread remodeling of proteome solubility in response to different protein homeostasis stresses
    Sui, X ; Pires, DEV ; Ormsby, AR ; Cox, D ; Nie, S ; Vecchi, G ; Vendruscolo, M ; Ascher, DB ; Reid, GE ; Hatters, DM (National Academy of Sciences, 2020-02-04)
    The accumulation of protein deposits in neurodegenerative diseases has been hypothesized to depend on a metastable subproteome vulnerable to aggregation. To investigate this phenomenon and the mechanisms that regulate it, we measured the solubility of the proteome in the mouse Neuro2a cell line under six different protein homeostasis stresses: 1) Huntington’s disease proteotoxicity, 2) Hsp70, 3) Hsp90, 4) proteasome, 5) endoplasmic reticulum (ER)-mediated folding inhibition, and 6) oxidative stress. Overall, we found that about one-fifth of the proteome changed solubility with almost all of the increases in insolubility were counteracted by increases in solubility of other proteins. Each stress directed a highly specific pattern of change, which reflected the remodeling of protein complexes involved in adaptation to perturbation, most notably, stress granule (SG) proteins, which responded differently to different stresses. These results indicate that the protein homeostasis system is organized in a modular manner and aggregation patterns were not correlated with protein folding stability (ΔG). Instead, distinct cellular mechanisms regulate assembly patterns of multiple classes of protein complexes under different stress conditions.
  • Item
    Thumbnail Image
    Helminth lipidomics: Technical aspects and future prospects
    Wang, T ; Nie, S ; Reid, GE ; Gasser, RB (ELSEVIER, 2021)
    Lipidomics is a relatively recent molecular research field, and explores lipids (fats) and their biology using advanced mass spectrometry technologies. Although this field has expanded significantly in biomedical and biotechnological disciplines, it is still in its infancy in molecular parasitology. Our goal here is to review and discuss technical aspects of MS-based lipidomics and its recent applications to parasitic worms, as well as challenges and future directions for worm lipid research. In a multi-omic paradigm, we expect that the exploration of lipidomic data for parasitic worms will yield important insights into lipid-associated biological pathways and processes, including the regulation of essential signalling pathways, parasite invasion, establishment, adaptation and development.
  • Item
    Thumbnail Image
    Quantitative lipidomic analysis of Ascaris suum
    Wang, T ; Nie, S ; Ma, G ; Vlaminck, J ; Geldhof, P ; Williamson, NA ; Reid, GE ; Gasser, RB ; Cappello, M (PUBLIC LIBRARY SCIENCE, 2020-12-01)
    Ascaris is a soil-transmitted nematode that causes ascariasis, a neglected tropical disease affecting predominantly children and adolescents in the tropics and subtropics. Approximately 0.8 billion people are affected worldwide, equating to 0.86 million disability-adjusted life-years (DALYs). Exploring the molecular biology of Ascaris is important to gain a better understanding of the host-parasite interactions and disease processes, and supports the development of novel interventions. Although advances have been made in the genomics, transcriptomics and proteomics of Ascaris, its lipidome has received very limited attention. Lipidomics is an important sub-discipline of systems biology, focused on exploring lipids profiles in tissues and cells, and elucidating their biological and metabolic roles. Here, we characterised the lipidomes of key developmental stages and organ systems of Ascaris of porcine origin via high throughput LC-MS/MS. In total, > 500 lipid species belonging to 18 lipid classes within three lipid categories were identified and quantified–in precise molar amounts in relation to the dry weight of worm material–in different developmental stages/sexes and organ systems. The results showed substantial differences in the composition and abundance of lipids with key roles in cellular processes and functions (e.g. energy storage regulation and membrane structure) among distinct stages and among organ systems, likely reflecting differing demands for lipids, depending on stage of growth and development as well as the need to adapt to constantly changing environments within and outside of the host animal. This work provides the first step toward understanding the biology of lipids in Ascaris, with possibilities to work toward designing new interventions against ascariasis.
  • Item
    Thumbnail Image
    Lipid composition and abundance in the reproductive and alimentary tracts of female Haemonchus contortus
    Wang, T ; Ma, G ; Nie, S ; Williamson, NA ; Reid, GE ; Gasser, RB (BMC, 2020-07-06)
    BACKGROUND: Lipids play essential structural and functional roles in the biology of animals. Studying the composition and abundance of lipids in parasites should assist in gaining a better understanding of their molecular biology, biochemistry and host-parasite interactions. METHODS: Here, we used a combination of high-performance liquid chromatography and mass spectrometric analyses, combined with bioinformatics, to explore the lipid composition and abundance in the reproductive (Rt) and alimentary (At) tracts of Haemonchus contortus. RESULTS: We identified and quantified 320 unique lipid species representing four categories: glycerolipids, glycerophospholipids, sphingolipids and steroid lipids. Glycerolipids (i.e. triradylglycerols) and glycerophospholipids (i.e. glycerophosphocholines) were the most commonly and abundant lipid classes identified and were significantly enriched in Rt and At, respectively. We propose that select parasite-derived lipids in Rt and At of adult female H. contortus are required as an energy source (i.e. triradylglycerol) or are involved in phospholipid biosynthesis (i.e. incorporated fatty acids) and host-parasite interactions (i.e. phospholipids and lysophospholipids). CONCLUSIONS: This work provides a first foundation to explore lipids at the organ-specific and tissue-specific levels in nematodes, and to start to unravel aspects of lipid transport, synthesis and metabolism, with a perspective on discovering new intervention targets.
  • Item
    Thumbnail Image
    Type IX Secretion System Cargo Proteins Are Glycosylated at the C Terminus with a Novel Linking Sugar of the Wbp/Vim Pathway
    Veith, PD ; Shoji, M ; O'Hair, RAJ ; Leeming, MG ; Nie, S ; Glew, MD ; Reid, GE ; Nakayama, K ; Reynolds, EC ; Trent, MS (AMER SOC MICROBIOLOGY, 2020-09-01)
    Porphyromonas gingivalis and Tannerella forsythia use the type IX secretion system to secrete cargo proteins to the cell surface where they are anchored via glycolipids. In P. gingivalis, the glycolipid is anionic lipopolysaccharide (A-LPS), of partially known structure. Modified cargo proteins were deglycosylated using trifluoromethanesulfonic acid and digested with trypsin or proteinase K. The residual modifications were then extensively analyzed by tandem mass spectrometry. The C terminus of each cargo protein was amide-bonded to a linking sugar whose structure was deduced to be 2-N-seryl, 3-N-acetylglucuronamide in P. gingivalis and 2-N-glycyl, 3-N-acetylmannuronic acid in T. forsythia The structures indicated the involvement of the Wbp pathway to produce 2,3-di-N-acetylglucuronic acid and a WbpS amidotransferase to produce the uronamide form of this sugar in P. gingivalis The wbpS gene was identified as PGN_1234 as its deletion resulted in the inability to produce the uronamide. In addition, the P. gingivalisvimA mutant which lacks A-LPS was successfully complemented by the T. forsythiavimA gene; however, the linking sugar was altered to include glycine rather than serine. After removal of the acetyl group at C-2 by the putative deacetylase, VimE, VimA presumably transfers the amino acid to complete the biosynthesis. The data explain all the enzyme activities required for the biosynthesis of the linking sugar accounting for six A-LPS-specific genes. The linking sugar is therefore the key compound that enables the attachment of cargo proteins in P. gingivalis and T. forsythia We propose to designate this novel linking sugar biosynthetic pathway the Wbp/Vim pathway.IMPORTANCEPorphyromonas gingivalis and Tannerella forsythia, two pathogens associated with severe gum disease, use the type IX secretion system (T9SS) to secrete and attach toxic arrays of virulence factor proteins to their cell surfaces. The proteins are tethered to the outer membrane via glycolipid anchors that have remained unidentified for more than 2 decades. In this study, the first sugar molecules (linking sugars) in these anchors are identified and found to be novel compounds. The novel biosynthetic pathway of these linking sugars is also elucidated. A diverse range of bacteria that do not have the T9SS were found to have the genes for this pathway, suggesting that they may synthesize similar linking sugars for utilization in different systems. Since the cell surface attachment of virulence factors is essential for virulence, these findings reveal new targets for the development of novel therapies.