School of Chemistry - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 63
  • Item
    No Preview Available
    Ion-pairs as a gateway to transmetalation: aryl transfer from boron to nickel and magnesium
    Fabijanczuk, KC ; Altalhi, WAO ; Aldajani, AMO ; Canty, AJ ; McLuckey, SA ; O'Hair, RAJ (ROYAL SOC CHEMISTRY, 2022-04-05)
    Gas-phase ion-ion reactions between tris-1,10-phenantholine metal dications, [(phen)3M]2+ (where M = Ni and Mg), and the tetraphenylborate anion yield the ion-pairs {[(phen)3M]2+[BPh4]-}+. The ion-pairs undergo transmetalation upon loss of a phen ligand to give the organometallic complexes [(phen)2M(Ph)]+. DFT calculations, used to determine the energy barriers for the transmetalation reactions and the hydrolysis reactions, are entirely consistent with the experimental results.
  • Item
    No Preview Available
    Near thermal, selective liberation of hydrogen from formic acid catalysed by copper hydride ate complexes
    Ma, HZ ; Canty, AJ ; O'Hair, RAJ (ROYAL SOC CHEMISTRY, 2023-01-19)
    A near thermal two-step catalytic cycle for the selective release of hydrogen from formic acid by mononuclear cuprate anions was revealed using multistage mass spectrometry experiments, deuterium labelling and DFT calculations. In gas-phase ion-molecule reactions, mononuclear copper hydride anions [(L)Cu(H)]- (where L = H-, O2CH-, BH4- and CN-) were found to react with formic acid (HCO2H) to yield [(L)Cu(O2CH)]- and H2. The copper formate anions [(L)Cu(O2CH)]- can decarboxylate via collision-induced dissociation (CID) to reform the copper hydride [(L)Cu(H)]-, thereby closing the two-step catalytic cycle. Analogous labelling experiments with d1-formic acid (DCO2H) reveal that the decarboxylation process also occurs spontaneously. A kinetic study was carried out to provide further insights into the species involved in this reaction. Energetics from density functional theory (DFT) calculations show that the key decarboxylation step can occur without CID, thus in support of experimental observations.
  • Item
    No Preview Available
    Electrospray Ionization Tandem Mass Spectrometry and DFT Survey of Copper(I) Ate Complexes Containing Coordinated Borohydride Anions
    Ma, HZ ; Canty, AJ ; O'Hair, RAJ (AMER CHEMICAL SOC, 2022-06-24)
    Copper(I) borohydride ate complexes of the type Cat+[XCu(BH4)]- have been previously postulated as intermediates in the reactions of copper salts with borohydride. Negative ion electrospray ionization of an acetonitrile solution of copper(I) phenylacetylide with a 10-fold excess of sodium borohydride (NaBH4) revealed the formation of a diverse range of mononuclear, dinuclear and trinuclear cuprates with different numbers of BH4-, H- and CN- ligands, the latter likely being formed by abstraction of CN- from the acetonitrile solvent. Collision-induced dissociation was used to examine the fragmentation reactions of the following borohydride containing cuprates: [Cu(H)(BH4)]-, [Cu(BH4)2]-, [Cu(BH4)(CN)]-, [Cu2(H)(BH4)2]-, [Cu2(H)2(BH4)]-, [Cu2(BH4)2(CN)]-, [Cu2(H)(BH4)(CN)]-, [Cu3(H)(BH4)3]-, [Cu3(H)2(BH4)2]-, [Cu3(H)3(BH4)]-, [Cu3(BH4)2(CN)2]-, and [Cu3(H)(BH4)2(CN)]-. In all cases, BH3 loss is observed. For many of the dinuclear and trinuclear complexes cluster fragmentation by loss of CuH was also observed. In the case of [Cu2(H)2(BH4)]- and [Cu3(H)3(BH4)]-, loss of H2 was also observed. DFT calculations were used to explore potential structures of the various borohydride-containing cuprates and to predict the overall reaction energetics for the various fragmentation channels.
  • Item
    No Preview Available
    Palladium-Mediated CO2 Extrusion Followed by Insertion of Allenes: Translating Mechanistic Studies to Develop a One-Pot Method for the Synthesis of Alkenes
    Yang, Y ; Spyrou, B ; White, JM ; Canty, AJ ; Donnelly, PS ; O'Hair, RAJ (AMER CHEMICAL SOC, 2022-07-11)
  • Item
    No Preview Available
    Catalytic Dehydrogenation of Liquid Organic Hydrogen Carrier Model Compounds by CpM+ (M = Fe, Co, Ni) in the Gas Phase
    King, R ; Canty, AJ ; Ariafard, A ; O'Hair, RAJ ; Ryzhov, V (AMER CHEMICAL SOC, 2022-12-09)
  • Item
    No Preview Available
    Electronic and Steric Effects on the Reactivity of Seleniranium Ions with Alkenes in the Gas Phase
    Brydon, SC ; Thomson, C ; O'Hair, RAJ ; White, JM (AMER CHEMICAL SOC, 2023-01-27)
    Gas phase ion-molecule reactions between seleniranium ions, R-c-SeCH2CH2+, and cis-cyclooctene were used to probe electronic and steric effects of substituents on kinetics and branching ratios. The second-order rate coefficients increased in the order p-OMeC6H4 < C6H5 < p-BrC6H4 < p-CF3C6H4 < m-NO2C6H4, giving a Hammett plot with R2 = 0.98 and ρ = +1.66. The two main pathways include direct transfer of the selenium moiety to the incoming alkene (π-ligand exchange) and the less favored ring-opening by attack at an iranium carbon to give a cis-bicyclic selenonium ion as supported by density functional theory (DFT) calculations. Branching ratios of each pathway indicated that electron-withdrawing groups directed more attack at carbon than selenium in agreement with previous solution-phase results. Increased steric bulk on selenium was investigated by changing the R group from a methyl to t-butyl, which not only shut down π-ligand exchange but also significantly reduced the overall reactivity. Finally, the reactivity of the iranium ion derived from Se-methylselenocysteine was investigated and shown to react faster and favor π-ligand exchange as the leaving group was changed from ethene to acrylic acid.
  • Item
    No Preview Available
    Bringing a Mechanistic Lens to the Development of New Transfer Hydroarylation Isodesmic Reactions for the Synthesis of Amides, Thioamides, Amidines, Alkenes and Ketones from Carboxylic Acids via Extrusion and Insertion Elementary Steps
    O'Hair, RAJ (Wiley, 2023-08-01)
    Abstract The wide availability, ease of handling and structural and functional diversity make carboxylic acids prized building blocks in organic synthesis. The past two decades has seen an explosion of interest in the development of new modes of reactivity of carboxylic acids and their derivatives. Of these, metal‐mediated decarboxylation reactions are attractive as they produce organometallic intermediates that can subsequently be used in C−X (where X=C, N, S etc) bond coupling reactions. Here the results of mechanistic studies integrating both gas‐ and condensed‐phase work are described for development of new extrusion‐insertion (ExIn) classes of reactions for the synthesis of amides, thioamides, amidines, alkenes and ketones from arylcarboxylic acids and suitable (hetero)cumulenes.
  • Item
    Thumbnail Image
    Aromatic residues in the C-terminal helix of human apoC-I mediate phospholipid interactions and particle morphology
    James, PF ; Dogovski, C ; Dobson, RCJ ; Bailey, MF ; Goldie, KN ; Karas, JA ; Scanlon, DB ; O'Hair, RAJ ; Perugini, MA (ELSEVIER, 2009-07-01)
    Human apolipoprotein C-I (apoC-I) is an exchangeable apolipoprotein that binds to lipoprotein particles in vivo. In this study, we employed a LC-MS/MS assay to demonstrate that residues 38-51 of apoC-I are significantly protected from proteolysis in the presence of 1,2-dimyristoyl-3-sn-glycero-phosphocholine (DMPC). This suggests that the key lipid-binding determinants of apoC-I are located in the C-terminal region, which includes F42 and F46. To test this, we generated site-directed mutants substituting F42 and F46 for glycine or alanine. In contrast to wild-type apoC-I (WT), which binds DMPC vesicles with an apparent Kd [Kd(app)] of 0.89 microM, apoC-I(F42A) and apoC-I(F46A) possess 2-fold weaker affinities for DMPC with Kd(app) of 1.52 microM and 1.58 microM, respectively. However, apoC-I(F46G), apoC-I(F42A/F46A), apoC-I(F42G), and apoC-I(F42G/F46G) bind significantly weaker to DMPC with Kd(app) of 2.24 microM, 3.07 microM, 4.24 microM, and 10.1 microM, respectively. Sedimentation velocity studies subsequently show that the protein/DMPC complexes formed by these apoC-I mutants sediment at 6.5S, 6.7S, 6.5S, and 8.0S, respectively. This is compared with 5.0S for WT apoC-I, suggesting the shape of the particles was different. Transmission electron microscopy confirmed this assertion, demonstrating that WT forms discoidal complexes with a length-to-width ratio of 2.57, compared with 1.92, 2.01, 2.16, and 1.75 for apoC-I(F42G), apoC-I(F46G), apoC-I(F42A/F46A), and apoC-I(F42G/F46G), respectively. Our study demonstrates that the C-terminal amphipathic alpha-helix of human apoC-I contains the major lipid-binding determinants, including important aromatic residues F42 and F46, which we show play a critical role in stabilizing the structure of apoC-I, mediating phospholipid interactions, and promoting discoidal particle morphology.
  • Item
    Thumbnail Image
    A photo-switchable molecular capsule: sequential photoinduced processes
    Choudhari, M ; Xu, J ; McKay, A ; Guerrin, C ; Forsyth, C ; Ma, HZ ; Goerigk, L ; O'Hair, RAJ ; Bonnefont, A ; Ruhlmann, L ; Aloise, S ; Ritchie, C (ROYAL SOC CHEMISTRY, 2022-10-24)
    The metastable trilacunary heteropolyoxomolybdate [PMo9O31(py)3]3- - {PMo9}; py = pyridine) and the ditopic pyridyl bearing diarylethene (DAE) (C25H16N2F6S2) self-assemble via a facile ligand replacement methodology to yield the photo-active molecular capsule [(PMo9O31)2(DAE)3]6-. The spatial arrangement and conformation of the three DAE ligands are directed by the surface chemistry of the molecular metal oxide precursor with exclusive ligation of the photo-active antiparallel rotamer to the polyoxometalate (POM) while the integrity of the assembly in solution has been verified by a suite of spectroscopic techniques. Electrocyclisation of the three DAEs occurs sequentially and has been investigated using a combination of steady-state and time-resolved spectroscopies with the discovery of a photochemical cascade whereby rapid photoinduced ring closure is followed by electron transfer from the ring-closed DAE to the POM in the latent donor-acceptor system on subsequent excitation. This interpretation is also supported by computational and detailed spectroelectrochemical analysis. Ring-closing quantum yields were also determined using a custom quantum yield determination setup (QYDS), providing insight into the impact of POM coordination on these processes.
  • Item
    No Preview Available
    Why does the synthesis of N-phenylbenzamide from benzenesulfinate and phenylisocyanate via the palladium-mediated Extrusion–Insertion pathway not work? A mechanistic exploration
    Yang, Y ; Canty, AJ ; O’Hair, RAJ ; Wentrup, C (CSIRO Publishing, 2022)
    The gas-phase extrusion–insertion (ExIn) reactions of the palladium complexes [(phen)nPd (O2SC6H5)]+ (phen = 1,10-phenanthroline, n = 1 or 2), were investigated in the gas phase by multistage mass spectrometry (MSn) experiments consisting of electrospray ionisation and a linear ion trap combined with density functional theory (DFT) calculations. Desulfination of palladium sulfinate cations under collision-induced dissociation (CID) generates the organopalladium intermediates [(phen)nPd(C6H5)]+. Of these two organometallic cations, only [(phen)Pd(C6H5)]+ reacts with phenyl isocyanate via insertion to yield [(phen)Pd(NPhC(O)C6H5)]+. The formation of a coordinated amidate anion is supported by DFT calculations. In exploring this reactivity in the solution phase, we found that heating a mixture of benzenesulfinic acid, phenylisocyanate and palladium trifluoroacetate under a range of different conditions (ligand free versus with ligand, different solvents, addition of acid or base) failed to lead to the formation N-phenyl-benzamide in all cases. Instead, biphenyl was formed and could be isolated in a yield of 46%. DFT calculations using a solvent continuum reveal that the barrier associated with the insertion reaction lies above the competing sequential reactions of desulfination of a second phenyl sulfinate followed by reductive elimination of biphenyl.