School of Chemistry - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    Trace residue identification, characterization, and longitudinal monitoring of the novel synthetic opioid β-U10, from discarded drug paraphernalia
    West, H ; Fitzgerald, JL ; Hopkins, KL ; Leeming, MG ; DiRago, M ; Gerostamoulos, D ; Clark, N ; Dietze, P ; White, JM ; Ziogas, J ; Reid, GE (WILEY, 2022-09)
    Empirical data regarding dynamic alterations in illicit drug supply markets in response to the COVID-19 pandemic, including the potential for introduction of novel drug substances and/or increased poly-drug combination use at the "street" level, that is, directly proximal to the point of consumption, are currently lacking. Here, a high-throughput strategy employing ambient ionization-mass spectrometry is described for the trace residue identification, characterization, and longitudinal monitoring of illicit drug substances found within >6,600 discarded drug paraphernalia (DDP) samples collected during a pilot study of an early warning system for illicit drug use in Melbourne, Australia from August 2020 to February 2021, while significant COVID-19 lockdown conditions were imposed. The utility of this approach is demonstrated for the de novo identification and structural characterization of β-U10, a previously unreported naphthamide analog within the "U-series" of synthetic opioid drugs, including differentiation from its α-U10 isomer without need for sample preparation or chromatographic separation prior to analysis. Notably, β-U10 was observed with 23 other drug substances, most commonly in temporally distinct clusters with heroin, etizolam, and diphenhydramine, and in a total of 182 different poly-drug combinations. Longitudinal monitoring of the number and weekly "average signal intensity" (ASI) values of identified substances, developed here as a semi-quantitative proxy indicator of changes in availability, relative purity and compositions of street level drug samples, revealed that increases in the number of identifications and ASI for β-U10 and etizolam coincided with a 50% decrease in the number of positive detections and an order of magnitude decrease in the ASI for heroin.
  • Item
    Thumbnail Image
    Type IX Secretion System Cargo Proteins Are Glycosylated at the C Terminus with a Novel Linking Sugar of the Wbp/Vim Pathway
    Veith, PD ; Shoji, M ; O'Hair, RAJ ; Leeming, MG ; Nie, S ; Glew, MD ; Reid, GE ; Nakayama, K ; Reynolds, EC ; Trent, MS (AMER SOC MICROBIOLOGY, 2020-09-01)
    Porphyromonas gingivalis and Tannerella forsythia use the type IX secretion system to secrete cargo proteins to the cell surface where they are anchored via glycolipids. In P. gingivalis, the glycolipid is anionic lipopolysaccharide (A-LPS), of partially known structure. Modified cargo proteins were deglycosylated using trifluoromethanesulfonic acid and digested with trypsin or proteinase K. The residual modifications were then extensively analyzed by tandem mass spectrometry. The C terminus of each cargo protein was amide-bonded to a linking sugar whose structure was deduced to be 2-N-seryl, 3-N-acetylglucuronamide in P. gingivalis and 2-N-glycyl, 3-N-acetylmannuronic acid in T. forsythia The structures indicated the involvement of the Wbp pathway to produce 2,3-di-N-acetylglucuronic acid and a WbpS amidotransferase to produce the uronamide form of this sugar in P. gingivalis The wbpS gene was identified as PGN_1234 as its deletion resulted in the inability to produce the uronamide. In addition, the P. gingivalisvimA mutant which lacks A-LPS was successfully complemented by the T. forsythiavimA gene; however, the linking sugar was altered to include glycine rather than serine. After removal of the acetyl group at C-2 by the putative deacetylase, VimE, VimA presumably transfers the amino acid to complete the biosynthesis. The data explain all the enzyme activities required for the biosynthesis of the linking sugar accounting for six A-LPS-specific genes. The linking sugar is therefore the key compound that enables the attachment of cargo proteins in P. gingivalis and T. forsythia We propose to designate this novel linking sugar biosynthetic pathway the Wbp/Vim pathway.IMPORTANCEPorphyromonas gingivalis and Tannerella forsythia, two pathogens associated with severe gum disease, use the type IX secretion system (T9SS) to secrete and attach toxic arrays of virulence factor proteins to their cell surfaces. The proteins are tethered to the outer membrane via glycolipid anchors that have remained unidentified for more than 2 decades. In this study, the first sugar molecules (linking sugars) in these anchors are identified and found to be novel compounds. The novel biosynthetic pathway of these linking sugars is also elucidated. A diverse range of bacteria that do not have the T9SS were found to have the genes for this pathway, suggesting that they may synthesize similar linking sugars for utilization in different systems. Since the cell surface attachment of virulence factors is essential for virulence, these findings reveal new targets for the development of novel therapies.