School of Chemistry - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 4 of 4
  • Item
    No Preview Available
    Identification of Anthelmintic Bishomoscalarane Sesterterpenes from the Australian Marine Sponge Phyllospongia bergquistae and Structure Revision of Phyllolactones A-D
    Hayes, S ; Taki, AC ; Lum, KY ; Byrne, JJ ; White, JM ; Ekins, MG ; Gasser, RB ; Davis, RA (AMER CHEMICAL SOC, 2022-07-22)
    High-throughput screening of the NatureBank marine extract library (7616 samples) identified an extract derived from the Australian marine sponge Phyllospongia bergquistae with activity against Hemonchus contortus (barber's pole worm), an economically important parasitic nematode. Bioassay-guided fractionation of the CH2Cl2/MeOH extract from P. bergquistae led to the purification of four known bishomoscalarane sesterterpenes, phyllolactones A-D (1-4). The absolute configurations of phyllolactones B (2) and C (3) were determined by single-crystal X-ray diffraction analysis; literature and data analyses revealed the need for these chemical structures to be revised. Compounds 2-4 induced a lethal, skinny (Ski) phenotype in larvae of H. contortus at concentrations between 5.3 and 10.1 μM. These data indicate that the bishomoscalarane sesterterpene structure class warrants further investigation for nematocidal or nematostatic activity.
  • Item
    No Preview Available
    Phytochemical Profiling and Biological Testing of the Constituents of the Australian Plant Haemodorum brevisepalum
    Norman, EO ; Hombsch, S ; Lever, J ; Brkljaca, R ; White, J ; Gasser, RB ; Taki, AC ; Urban, S (AMER CHEMICAL SOC, 2021-11-26)
    Phytochemical profiling was undertaken on the crude extracts of the bulbs, stems, and the fruits of Haemodorum brevisepalum, to determine the nature of the chemical constituents present. This represents the first study to investigate the fruits of a species of Haemodorum. In total, 13 new and 17 previously reported compounds were isolated and identified. The new compounds were of the phenylphenalenone-type class, with a representative of a novel structural form, named tentatively "oxabenzochromenone" (1), a compound akin to an intermediate in a recently proposed phenylphenalenone metabolic network (2), seven new phenylphenalenones (4-10), four new phenylbenzoisochromenones (11-14), and a new phenylbenzoisochromenone derivative (18). The previously reported compounds identified were of the following structure classes: oxabenzochrysenone (3, 23-26), flavonol (15, 16), phenylbenzoisochromenone (17, 21, 22, 27-30), and phenylphenalenone (19, 20). Compounds 2-4, 6-9, 15-18, 21, 22, and 26 were subjected to antimicrobial evaluation with moderate activity observed against Staphylococcus aureus MRSA and slight activity against Pseudomonas aeruginosa and Candida albicans. Compounds 4, 6-9, 17, and 21 were also evaluated for anthelminthic activity against larvae of the blood-feeding parasitic nematode Haemonchus contortus.
  • Item
    No Preview Available
    Phytochemical Profiling and Biological Activity of the Australian Carnivorous Plant, Drosera magna
    Norman, EO ; Tuohey, H ; Pizzi, D ; Saidah, M ; Bell, R ; Brkljaca, R ; White, JM ; Gasser, RB ; Taki, AC ; Urban, S (AMER CHEMICAL SOC, 2021-04-23)
    Phytochemical profiling was undertaken on the crude extracts of Drosera magna to determine the nature of the chemical constituents present. In total, three new flavonol diglycosides (1-3), one new flavan-3-ol glycoside (4), and 12 previously reported compounds of the flavonol (5, 9), flavan-3-ol (15), flavanone (8), 1,4-napthoquinone (6, 7, 13, 14), 2,3-dehydroxynapthalene-1,4-dione (10-12), and phenolic acid (16) structure classes were isolated and identified. Compounds 1-9, 13, 17, and 18 were assessed for antimicrobial activity, with compounds 6, 7, 8, and 9 showing significant activity. Compounds 1, 2, and 6 were also evaluated for anthelmintic activity against larval forms of Hemonchus contortus, with compound 6 being active.
  • Item
    Thumbnail Image
    Dysidenin from the Marine Sponge Citronia sp. Affects the Motility and Morphology of Haemonchus contortus Larvae In Vitro
    Ramage, KS ; Taki, AC ; Lum, KY ; Hayes, S ; Byrne, JJ ; Wang, T ; Hofmann, A ; Ekins, MG ; White, JM ; Jabbar, A ; Davis, RA ; Gasser, RB (MDPI, 2021-12)
    High-throughput screening of the NatureBank marine extract library (n = 7616) using a phenotypic assay for the parasitic nematode Haemonchus contortus identified an active extract derived from the Australian marine sponge Citronia sp. Bioassay-guided fractionation of the CH2Cl2/MeOH extract from Citronia sp. resulted in the purification of two known hexachlorinated peptides, dysidenin (1) and dysideathiazole (2). Compound 1 inhibited the growth/development of H. contortus larvae and induced multiple phenotypic changes, including a lethal evisceration (Evi) phenotype and/or somatic cell and tissue destruction. This is the first report of anthelmintic activity for these rare and unique polychlorinated peptides.