School of Chemistry - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 4 of 4
  • Item
    No Preview Available
    Rhenium and Technetium-oxo Complexes with Thioamide Derivatives of Pyridylhydrazine Bifunctional Chelators Conjugated to the Tumour Targeting Peptides Octreotate and Cyclic-RGDfK
    North, AJ ; Karas, JA ; Ma, MT ; Blower, PJ ; Ackermann, U ; White, JM ; Donnelly, PS (AMER CHEMICAL SOC, 2017-08-21)
    This research aimed to develop new tumor targeted theranostic agents taking advantage of the similarities in coordination chemistry between technetium and rhenium. A γ-emitting radioactive isotope of technetium is commonly used in diagnostic imaging, and there are two β- emitting radioactive isotopes of rhenium that have the potential to be of use in radiotherapy. Variants of the 6-hydrazinonicotinamide (HYNIC) bifunctional ligands have been prepared by appending thioamide functional groups to 6-hydrazinonicotinamide to form pyridylthiosemicarbazide ligands (SHYNIC). The new bidentate ligands were conjugated to the tumor targeting peptides Tyr3-octreotate and cyclic-RGD. The new ligands and conjugates were used to prepare well-defined {M═O}3+ complexes (where M = 99mTc or natRe or 188Re) that feature two targeting peptides attached to the single metal ion. These new SHYNIC ligands are capable of forming well-defined rhenium and technetium complexes and offer the possibility of using the 99mTc imaging and 188/186Re therapeutic matched pairs.
  • Item
    Thumbnail Image
    Versatile New Bis(thiosemicarbazone) Bifunctional Chelators: Synthesis, Conjugation to Bombesin(7-14)-NH2, and Copper-64 Radiolabeling
    Paterson, BM ; Karas, JA ; Scanlon, DB ; White, JM ; Donnelly, PS (AMER CHEMICAL SOC, 2010-02-15)
    New bifunctional derivatives of diacetyl-bis(4-methylthiosemicarbazone) (H(2)atsm) have been prepared by a selective transamination reaction of a new dissymmetric bis(thiosemicarbazone) precursor H(2)L(1). The new derivatives contain an aliphatic carboxylic acid (H(2)L(2) and H(2)L(3)), t-butyl carbamate (H(2)L(4)), or ammonium ion (H(2)L(5)) functional group. The new ligands and copper(II) complexes have been characterized by NMR spectroscopy, mass spectrometry, and microanalysis. The complex Cu(II)(L(4)) was structurally characterized by X-ray crystallography and shows the metal center to be in an N(2)S(2) distorted square planar coordination geometry. Electrochemical measurements show that the copper(II) complexes undergo a reversible reduction attributable to a Cu(II)/Cu(I) process. The ligands and the copper(II) complexes featuring a carboxylic acid functional group have been conjugated to the tumor targeting peptide bombesin(7-14)-NH(2). The bifunctional peptide conjugates were radiolabeled with copper-64 in the interest of developing new positron emission tomography (PET) imaging agents. The conjugates were radiolabeled with copper-64 rapidly in high radiochemical purity (>95%) at room temperature under mild conditions and were stable in a cysteine and histidine challenge study.
  • Item
    Thumbnail Image
    Gallium-68 Complex of a Macrobicyclic Cage Amine Chelator Tethered to Two Integrin-Targeting Peptides for Diagnostic Tumor Imaging
    Ma, MT ; Neels, OC ; Denoyer, D ; Roselt, P ; Karas, JA ; Scanlon, DB ; White, JM ; Hicks, RJ ; Donnelly, PS (AMER CHEMICAL SOC, 2011-10)
    Tumor-targeting peptides radiolabeled with positron-emitting (68)Ga are promising candidates as new noninvasive diagnostic agents for positron emission tomography (PET). The targeting peptides are tethered to a chelator that forms a stable coordination complex with Ga(3+) that is inert to dissociation of Ga(3+)in vivo. Metal complexes of macrobicyclic hexaamine "sarcophagine" (sar = 3,6,10,13,16,19-hexaazabicyclo[6.6.6]icosane) ligands exhibit remarkable stability as a result of the encapsulating nature of the cage amine ligand. A Ga(3+) sarcophagine complex, [Ga-(1-NH(3)-8-NH(2)-sar)](4+), has been characterized using X-ray crystallography, demonstrating that Ga(3+) is coordinated to six nitrogen atoms in a distorted octahedral complex. A bifunctional derivative of (NH(2))(2)sar, possessing two aliphatic linkers with carboxylic acid functional groups has been attached to two cyclic-RGD peptides that target the α(v)β(3) integrin receptor that is overexpressed in some types of tumor tissue. This dimeric species can be radiolabeled with (68)Ga(3+) in >98% radiochemical yield and (68)Ga(3+) does not dissociate from the ligand in the presence of transferrin, an endogenous protein with high affinity for Ga(3+). Biodistribution and micro-PET imaging studies in tumor-bearing mice indicate that the tracer accumulates specifically in tumors with high integrin expression. The high tumor uptake is coupled with low nonspecific uptake and clearance predominantly through the kidneys resulting in high-quality PET images in animal models.
  • Item
    Thumbnail Image
    Macrobicyclic Cage Amine Ligands for Copper Radiopharmaceuticals: A Single Bivalent Cage Amine Containing Two Lys3-bombesin Targeting Peptides
    Ma, MT ; Cooper, MS ; Paul, RL ; Shaw, KP ; Karas, JA ; Scanlon, D ; White, JM ; Blower, PJ ; Donnelly, PS (AMER CHEMICAL SOC, 2011-07-18)
    The synthesis of new cage amine macrobicyclic ligands with pendent carboxylate functional groups designed for application in copper radiopharmaceuticals is described. Reaction of [Cu((NH(2))(2)sar)](2+) (sar = 3,6,10,13,16,19-hexaazabicyclo[6.6.6]icosane) with either succinic or glutaric anhydride results in selective acylation of the primary amine atoms of [Cu((NH(2))(2)sar)](2+) to give derivatives with either one or two aliphatic carboxylate functional groups separated from the cage amine framework by either a four- or five-atom linker. The Cu(II) serves to protect the secondary amine nitrogen atoms from acylation, and can be removed to give the free ligands. The newly appended carboxylate functional groups can be used as sites of attachment for cancer-targeting peptides such as Lys(3)-bombesin. The synthesis of the first dimeric sarcophagine-peptide conjugate, possessing two Lys(3)-bombesin peptides tethered to a single cage amine, is presented. This species has been radiolabeled with copper-64 at ambient temperature and there is minimal dissociation of Cu(II) from the conjugate even after two days of incubation in human serum.