School of Chemistry - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 1042
  • Item
    Thumbnail Image
    Opening Magnetic Hysteresis by Axial Ferromagnetic Coupling: From Mono‐Decker to Double‐Decker Metallacrown
    Wang, J ; Li, Q ; Wu, S ; Chen, Y ; Wan, R ; Huang, G ; Liu, Y ; Liu, J ; Reta, D ; Giansiracusa, MJ ; Wang, Z ; Chilton, NF ; Tong, M (Wiley, 2021-03)
  • Item
    No Preview Available
    Sonosynthesis of nanobiotics with antimicrobial and antioxidant properties.
    Zhu, H ; Wen, Q ; Bhangu, SK ; Ashokkumar, M ; Cavalieri, F (Elsevier BV, 2022-05)
    Transforming small-molecule antibiotics into carrier-free nanoantibiotics represents an opportunity for developing new multifunctional therapeutic agents. In this study, we demonstrate that acoustic cavitation produced by high-frequency ultrasound transforms the antibiotic doxycycline into carrier-free nanobiotics. Upon sonication for 1 h at 10-15 W cm-3, doxycycline molecules underwent hydroxylation and dimerization processes to ultimately self-assemble into nanoparticles of ∼100-200 nm in size. Micrometer sized particles can be also obtained by increasing the acoustic power to 20 W cm-3. The nanodrugs exhibited antioxidant properties, along with antimicrobial activity against both Gram-positive (S. aureus) and Gram-negative (E. coli) bacterial strains. Our results highlight the feasibility of the ultrasound-based approach for engineering drug molecules into a nanosized formulation with controlled and multiple bio-functionalities.
  • Item
    No Preview Available
    Evaluation of a lanthanide nanoparticle-based contrast agent for microcomputed tomography of porous channels in subchondral bone
    Silva, MO ; Kirkwood, N ; Mulvaney, P ; Ellis, A ; Stok, KS (WILEY, 2022-05-19)
    Osteoarthritis (OA) is a chronic joint disease that causes disability and pain. The osteochondral interface is a gradient tissue region that plays a significant role in maintaining joint health. It has been shown that during OA, increased neoangiogenesis creates porous channels at the osteochondral interface allowing the transport of molecules related to OA. Importantly, the connection between these porous channels and the early stages of OA development is still not fully understood. Microcomputed tomography (microCT) offers the ability to image the porous channels at the osteochondral interface, however, a contrast agent is necessary to delineate the different X-ray attenuations of the tissues. In this study BaYbF5 -SiO2 nanoparticles are synthesized and optimized as a microCT contrast agent to obtain an appropriate contrast attenuation for subsequent segmentation of structures of interest, that is, porous channels, and mouse subchondral bone. For this purpose, BaYbF5 nanoparticles were synthesized and coated with a biocompatible silica shell (SiO2 ). The optimized BaYbF5 -SiO2 27 nm nanoparticles exhibited the highest average microCT attenuation among the biocompatible nanoparticles tested. The BaYbF5 -SiO2 27 nm nanoparticles increased the mean X-ray attenuation of structures of interest, for example, porous channel models and mouse subchondral bone. The BaYbF5 -SiO2 contrast attenuation was steady after diffusion into mouse subchondral bone. In this study, we obtained for the first time, the average microCT attenuation of the BaYbF5 -SiO2 nanoparticles into porous channel models and mouse subchondral bone. In conclusion, BaYbF5 -SiO2 nanoparticles are a potential contrast agent for imaging porous channels at the osteochondral interface using microCT.
  • Item
    No Preview Available
    Lysozyme microspheres incorporated with anisotropic gold nanorods for ultrasound activated drug delivery.
    Bhargawa, B ; Sharma, V ; Ganesh, M-R ; Cavalieri, F ; Ashokkumar, M ; Neppolian, B ; Sundaramurthy, A (Elsevier BV, 2022-05)
    We report on the fabrication of lysozyme microspheres (LyMs) incorporated with gold nanorods (NRs) as a distinctive approach for the encapsulation and release of an anticancer drug, 5-Fluorouracil (5-FU). LyMs with an average size of 4.0 ± 1.0 µm were prepared by a sonochemical method and characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Fourier-transform infrared spectroscopy (FTIR). The LyMs were examined using hydrophobic (nile red) as well as hydrophilic (trypan blue) dyes under confocal laser scanning microscopy (CLSM) to obtain information about the preferential distribution of fluorescent molecules. Notably, the fluorescent molecules were accumulated in the inner lining of LyMs as the core was occupied with air. The encapsulation efficiency of 5-FU for LyMs-NR was found to be ∼64%. The drug release from control LyMs as well as LyMs incorporated with NRs was investigated under the influence of ultrasound (US) at 200 kHz. The total release for control LyMs and LyMs incorporated with gold NRs was found to be ∼70 and 95% after 1 h, respectively. The density difference caused by NR incorporation on the shell played a key role in rupturing the LyMs-NR under US irradiation. Furthermore, 5-FU loaded LyMs-NR exhibited excellent anti-cancer activity against the THP-1 cell line (∼90% cell death) when irradiated with US of 200 kHz. The enhanced anti-cancer activity of LyMs-NR was caused by the transfer of released 5-FU molecules from bulk to the interior of the cell via temporary pores formed on the surface of cancer cells, i.e., sonoporation. Thus, LyMs-NR demonstrated here has a high potential for use as carriers in the field of drug delivery, bio-imaging and therapy.
  • Item
    No Preview Available
    An ion mobility mass spectrometer coupled with a cryogenic ion trap for recording electronic spectra of charged, isomer-selected clusters
    Buntine, JT ; Carrascosa, E ; Bull, JN ; Jacovella, U ; Cotter, MI ; Watkins, P ; Liu, C ; Scholz, MS ; Adamson, BD ; Marlton, SJP ; Bieske, EJ (AIP Publishing, 2022-04-01)
    Infrared and electronic spectra are indispensable for understanding the structural and energetic properties of charged molecules and clusters in the gas phase. However, the presence of isomers can potentially complicate the interpretation of spectra, even if the target molecules or clusters are mass-selected beforehand. Here, we describe an instrument for spectroscopically characterizing charged molecular clusters that have been selected according to both their isomeric form and their mass-to-charge ratio. Cluster ions generated by laser ablation of a solid sample are selected according to their collision cross sections with helium buffer gas using a drift tube ion mobility spectrometer and their mass-to-charge ratio using a quadrupole mass filter. The mobility- and mass-selected target ions are introduced into a cryogenically cooled, three-dimensional quadrupole ion trap where they are thermalized through inelastic collisions with an inert buffer gas (He or He/N2 mixture). Spectra of the molecular ions are obtained by tagging them with inert atoms or molecules (Ne and N2), which are dislodged following resonant excitation of an electronic transition, or by photodissociating the cluster itself following absorption of one or more photons. An electronic spectrum is generated by monitoring the charged photofragment yield as a function of wavelength. The capacity of the instrument is illustrated with the resonance-enhanced photodissociation action spectra of carbon clusters (Cn +) and polyacetylene cations (HC2nH+) that have been selected according to the mass-to-charge ratio and collision cross section with He buffer gas and of mass-selected Au2 + and Au2Ag+ clusters.
  • Item
    No Preview Available
    Practising Chemistry in the British Empire: George Christian Hoffmann (1837-1917) and the Geological Survey of Canada
    Rae, ID ; Maroske, S (Consortium Erudit, 2021-03-17)
    George Christian Hoffmann, of German extraction, was born in London. After studying at the Royal School of Mines and working in London as a chemical analyst, he set out on a career that took him to Natal, in south-east Africa, to Melbourne in the Australian colony of Victoria, and to Canada where he had a long career with the Geological Survey, becoming Deputy Director in 1880 and retiring in 1907. In his work with the Geological Survey, he determined the chemical composition and identity of mineral samples collected by and submitted to the Survey, assessing their economic potential.
  • Item
    No Preview Available
    Magnetic properties and neutron spectroscopy of lanthanoid-{tetrabromocatecholate/18-crown-6} single-molecule magnets
    Dunstan, MA ; Cagnes, M ; Phonsri, W ; Murray, KS ; Mole, RA ; Boskovic, C (CSIRO PUBLISHING, 2022-03-14)
  • Item
    No Preview Available
    An icosanuclear silver(I) cluster supported by bis (thiosemicarbazonato) ligands
    Paterson, BM ; White, JM ; Donnelly, PS (CSIRO PUBLISHING, 2022-03-10)
  • Item
    No Preview Available
    Impact of the 2Fe2P core geometry on the reduction chemistry of phosphido-bridged diiron hexacarbonyl compounds
    Selan, OTE ; Cheah, MH ; Abrahams, BF ; Gable, RW ; Best, SP (CSIRO PUBLISHING, 2022-02-26)
  • Item
    No Preview Available
    Editorial: Perspectives on quality papers in analytical chemistry
    Liu, S ; McKelvie, I (Elsevier BV, 2022-08-01)