School of Chemistry - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 11
  • Item
    Thumbnail Image
    Photophysics and spectroscopy of 1,2-Benzazulene
    Awuku, S ; Bradley, SJ ; Ghiggino, KP ; Steer, RP ; Stevens, AL ; White, JM ; Yeow, C (Elsevier, 2021-12)
    The electronic spectroscopy and photophysics of 1,2-benzazulene (BzAz) have been examined in solution and in thin solid films, with the objective of comparing its intramolecular and intermolecular excited state decay processes with those of azulene. Unlike azulene, the S2 – S0 absorption and fluorescence spectra exhibit a clear mirror image relationship dominated by a single strong Franck-Condon active progression. Picosecond transient absorption spectra and non-linear S2 fluorescence upconversion experiments reveal lifetimes that follow a well-established energy gap law correlation, indicative of a dominant S2 – S1 decay route. Mechanistic interpretations, including the possibility of S2 singlet fission in aggregates, are discussed.
  • Item
    Thumbnail Image
    Medium effects on the fluorescence of Imide-substituted naphthalene diimides
    Pervin, R ; Manian, A ; Chen, Z ; Christofferson, AJ ; Owyong, TC ; Bradley, SJ ; White, JM ; Ghiggino, KP ; Russo, SP ; Wong, WWH (Elsevier, 2023-03-01)
    Naphthalene diimides (NDIs) are a common class of chromophores used in photon harvesting applications due to their functional malleability through substitution of the NDI core. However, some derivatives with substitution at the imide position of the NDI core only become emissive in electron-rich aromatic solvents. This study examines this phenomenon from both an experimental and theoretical perspective, in order to understand how NDIs interact with each other and the surrounding medium upon photoexcitation. We report the photophysical properties of cyclohexyl and several aromatic imide-substituted NDI derivatives, and show that fluorescence properties are strongly influenced by solvation in more electron-rich aromatic solvents (e.g. toluene, xylene, mesitylene). Theoretical modeling supports strong interactions, including ground state charge-transfer complexation, with aromatic solvents. In solid poly(methyl methacrylate) (PMMA) and poly(styrene) (PS) film media, both aggregation and complexation are shown to contribute to absorption and emission properties. The results also demonstrate that aromatic imide substituents not only act to provide steric bulk to the NDI chromophore but participate in interactions with the surrounding medium that affect the overall photophysical properties.
  • Item
    Thumbnail Image
    Limitations of conjugated polymers as emitters in triplet-triplet annihilation upconversion
    O'shea, R ; Gao, C ; Bradley, S ; Owyong, TC ; Wu, N ; White, JM ; Ghiggino, KP ; Wong, WWH (ROYAL SOC CHEMISTRY, 2021-11-29)
    Triplet–triplet annihilation upconversion performances for poly(phenylene-vinylene) emitters were investigated through a series of copolymers with bulky sidechains.
  • Item
    Thumbnail Image
    Revealing the influence of steric bulk on the triplet-triplet annihilation upconversion performance of conjugated polymers
    O'shea, R ; Kendrick, WJ ; Gao, C ; Owyong, TC ; White, JM ; Ghiggino, KP ; Wong, WWH (NATURE PORTFOLIO, 2021-10-01)
    A series of poly(phenylene-vinylene)-based copolymers are synthesized using the Gilch method incorporating monomers with sterically bulky sidechains. The photochemical upconversion performance of these polymers as emitters are investigated using a palladium tetraphenyltetrabenzoporphyrin triplet sensitizer and MEH-PPV as reference. Increased incorporation of sterically bulky monomers leads to a reduction in the upconversion efficiency despite improved photoluminescence quantum yield. A phosphorescence quenching study indicates issues with the energy transfer process between the triplet sensitizer and the copolymers. The best performance with 0.18% upconversion quantum yield is obtained for the copolymer containing 10% monomer with bulky sidechains.
  • Item
    Thumbnail Image
    The role of conformational heterogeneity in the excited state dynamics of linked diketopyrrolopyrrole dimers†
    Bradley, SJ ; Chi, M ; White, JM ; Hall, CR ; Goerigk, L ; Smith, TA ; Ghiggino, KP (ROYAL SOC CHEMISTRY, 2021-04-21)
    Diketopyrrolopyrrole (DPP) derivatives have been proposed for both singlet fission and energy upconversion as they meet the energetic requirements and exhibit superior photostability compared to many other chromophores. In this study, both time-resolved electronic and IR spectroscopy have been applied to investigate excited state relaxation processes competing with fission in dimers of DPP derivatives with varying linker structures. A charge-separated (CS) state is shown to be an important intermediate with dynamics that are both solvent and linker dependent. The CS state is found for a subset of the total population of excited molecules and it is proposed that CS state formation requires suitably aligned dimers within a broader distribution of conformations available in solution. No long-lived triplet signatures indicative of singlet fission were detected, with the CS state likely acting as an alternative relaxation pathway for the excitation energy. This study provides insight into the role of molecular conformation in determining excited state relaxation pathways in DPP dimer systems.
  • Item
    Thumbnail Image
    Concentrating Aggregation-Induced Fluorescence in Planar Waveguides: A Proof-of-Principle
    Banal, JL ; White, JM ; Ghiggino, KP ; Wong, WWH (NATURE PORTFOLIO, 2014-04-10)
    The photophysical properties of fluorescent dyes are key determinants in the performance of luminescent solar concentrators (LSCs). First-generation dyes--coumarin, perylenes, and rhodamines--used in LSCs suffer from both concentration quenching in the solid-state and small Stokes shifts which limit the current LSC efficiencies to below theoretical limits. Here we show that fluorophores that exhibit aggregation-induced emission (AIE) are promising materials for LSC applications. Experiments and Monte Carlo simulations show that the optical quantum efficiencies of LSCs with AIE fluorophores are at least comparable to those of LSCs with first-generation dyes as the active materials even without the use of any optical accessories to enhance the trapping efficiency of the LSCs. Our results demonstrate that AIE fluorophores can potentially solve some key limiting properties of first-generation LSC dyes.
  • Item
    Thumbnail Image
    A Transparent Planar Concentrator Using Aggregates of gem-Pyrene Ethenes
    Banal, JL ; White, JM ; Lam, TW ; Blakers, AW ; Ghiggino, KP ; Wong, WWH (WILEY-V C H VERLAG GMBH, 2015-10-07)
    The luminescence properties of pyrene ethenes, both as monomer and aggregate species, are found to depend on the regioisomer structure. Systematic shifts in absorption, emission, and excitation spectra of the gem‐pyrene ethenes, both in solution and in rigid polymer hosts, are consistent with weakly interacting H‐aggregate formation. This aggregation leads to excimer‐like emission with Stokes shifts greater than 1 eV. Planar concentrators fabricated from gem‐pyrene diphenylethenes show comparable performance to previously reported inorganic phosphors. The UV absorption and emission properties of the planar concentrator devices exhibit potential for transparent solar concentrators or visible–blind photodetector applications. This is the first demonstration of exploiting the unusual photophysics of molecular aggregates in planar concentrators.
  • Item
    Thumbnail Image
    Energy Migration in Organic Solar Concentrators with a Molecularly Insulated Perylene Diimide
    Banal, JL ; Soleimaninejad, H ; Jradi, FM ; Liu, M ; White, JM ; Blakers, AW ; Cooper, MW ; Jones, DJ ; Ghiggino, KP ; Marder, SR ; Smith, TA ; Wong, WWH (AMER CHEMICAL SOC, 2016-06-23)
  • Item
    Thumbnail Image
    Determinants of the efficiency of photon upconversion by triplet-triplet annihilation in the solid state: zinc porphyrin derivatives in PVA
    Rautela, R ; Joshi, NK ; Novakovic, S ; Wong, WWH ; White, JM ; Ghiggino, KP ; Paige, MF ; Steer, RP (ROYAL SOC CHEMISTRY, 2017-09-14)
    Spectroscopic, photophysical and computational studies designed to expose and explain the differences in the efficiencies of non-coherent photon upconversion (NCPU) by triplet-triplet annihilation (TTA) have been carried out for a new series of alkyl-substituted diphenyl and tetraphenyl zinc porphyrins, both in fluid solution and in solid films. Systematic variations in the alkyl-substitution of the phenyl groups in both the di- and tetraphenyl porphyrins introduces small, but well-understood changes in their spectroscopic and photophysical properties and in their TTA efficiencies. In degassed toluene solution TTA occurs for all derivatives and produces the fluorescent S2 product states in all cases. In PVA matrices, however, none of the di-phenylporphyrins exhibit measurable NCPU whereas all the tetraphenyl-substituted compounds remain upconversion-active. In PVA the NCPU efficiencies of the zinc tetraphenylporphyrins vary significantly with their steric characteristics; the most sterically crowded tetraphenyl derivative exhibits the greatest efficiency. DFT-D computations have been undertaken and help reveal the sources of these differences.
  • Item
    Thumbnail Image
    Highly Fluorescent Molecularly Insulated Perylene Diimides: Effect of Concentration on Photophysical Properties
    Zhang, B ; Soleimaninejad, H ; Jones, DJ ; White, JM ; Ghiggino, KP ; Smith, TA ; Wong, WWH (AMER CHEMICAL SOC, 2017-10-10)