School of Chemistry - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 7 of 7
  • Item
    Thumbnail Image
    C-terminus amidation influences biological activity and membrane interaction of maculatin 1.1
    Zhu, S ; Li, W ; O'Brien-Simpson, N ; Separovic, F ; Sani, M-A (SPRINGER WIEN, 2021-05)
    Cationic antimicrobial peptides have been investigated for their potential use in combating infections by targeting the cell membrane of microbes. Their unique chemical structure has been investigated to understand their mode of action and optimize their dose-response by rationale design. One common feature among cationic AMPs is an amidated C-terminus that provides greater stability against in vivo degradation. This chemical modification also likely modulates the interaction with the cell membrane of bacteria yet few studies have been performed comparing the effect of the capping groups. We used maculatin 1.1 (Mac1) to assess the role of the capping groups in modulating the peptide bacterial efficiency, stability and interactions with lipid membranes. Circular dichroism results showed that C-terminus amidation maintains the structural stability of the peptide (α-helix) in contact with micelles. Dye leakage experiments revealed that amidation of the C-terminus resulted in higher membrane disruptive ability while bacteria and cell viability assays revealed that the amidated form displayed higher antibacterial ability and cytotoxicity compared to the acidic form of Mac1. Furthermore, 31P and 2H solid-state NMR showed that C-terminus amidation played a greater role in disturbance of the phospholipid headgroup but had little effect on the lipid tails. This study paves the way to better understand how membrane-active AMPs act in live bacteria.
  • Item
    Thumbnail Image
    Enhancing proline-rich antimicrobial peptide action by homodimerization: influence of bifunctional linker
    Li, W ; Lin, F ; Hung, A ; Barlow, A ; Sani, M-A ; Paolini, R ; Singleton, W ; Holden, J ; Hossain, MA ; Separovic, F ; O'Brien-Simpson, NM ; Wade, JD (ROYAL SOC CHEMISTRY, 2022-02-23)
    Antimicrobial peptides (AMPs) are host defense peptides, and unlike conventional antibiotics, they possess potent broad spectrum activities and, induce little or no antimicrobial resistance. They are attractive lead molecules for rational development to improve their therapeutic index. Our current studies examined dimerization of the de novo designed proline-rich AMP (PrAMP), Chex1-Arg20 hydrazide, via C-terminal thiol addition to a series of bifunctional benzene or phenyl tethers to determine the effect of orientation of the peptides and linker length on antimicrobial activity. Antibacterial assays confirmed that dimerization per se significantly enhances Chex1-Arg20 hydrazide action. Greatest advantage was conferred using perfluoroaromatic linkers (tetrafluorobenzene and octofluorobiphenyl) with the resulting dimeric peptides 6 and 7 exhibiting potent action against Gram-negative bacteria, especially the World Health Organization's critical priority-listed multidrug-resistant (MDR)/extensively drug-resistant (XDR) Acinetobacter baumannii as well as preformed biofilms. Mode of action studies indicated these lead PrAMPs can interact with both outer and inner bacterial membranes to affect the membrane potential and stress response. Additionally, 6 and 7 possess potent immunomodulatory activity and neutralise inflammation via nitric oxide production in macrophages. Molecular dynamics simulations of adsorption and permeation mechanisms of the PrAMP on a mixed lipid membrane bilayer showed that a rigid, planar tethered dimer orientation, together with the presence of fluorine atoms that provide increased bacterial membrane interaction, is critical for enhanced dimer activity. These findings highlight the advantages of use of such bifunctional tethers to produce first-in-class, potent PrAMP dimers against MDR/XDR bacterial infections.
  • Item
    Thumbnail Image
    C-Terminal Modification and Multimerization Increase the Efficacy of a Proline-Rich Antimicrobial Peptide
    Li, W ; O'Brien-Simpson, NM ; Yao, S ; Tailhades, J ; Reynolds, EC ; Dawson, RM ; Otvos, L ; Hossain, MA ; Separovic, F ; Wade, JD (WILEY-V C H VERLAG GMBH, 2017-01-05)
    Two series of branched tetramers of the proline-rich antimicrobial peptide (PrAMP), Chex1-Arg20, were prepared to improve antibacterial selectivity and potency against a panel of Gram-negative nosocomial pathogens including Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii and Pseudomonas aeruginosa. First, tetramerization was achieved by dithiomaleimide (DTM) conjugation of two C-terminal-cysteine bearing dimers that also incorporated C-terminal peptide chemical modification. DTM-linked tetrameric peptides containing a C-terminal hydrazide moiety on each dimer exhibited highly potent activities in the minimum inhibitory concentration (MIC) range of 0.49-2.33 μm. A second series of tetrameric analogues with C-terminal hydrazide modification was prepared by using alternative conjugation linkers including trans-1,4-dibromo-2-butene, α,α'-dibromo-p-xylene, or 6-bismaleimidohexane to determine the effect of length on activity. Each displayed potent and broadened activity against Gram-negative nosocomial pathogens, particularly the butene-linked tetrameric hydrazide. Remarkably, the greatest MIC activity is against P. aeruginosa (0.77 μm/8 μg mL-1 ) where the monomer is inactive. None of these peptides showed any cytotoxicity to mammalian cells up to 25 times the MIC. A diffusion NMR study of the tetrameric hydrazides showed that the more active antibacterial analogues were those with a more compact structure having smaller hydrodynamic radii. The results show that C-terminal PrAMP hydrazidation together with its rational tetramerization is an effective means for increasing both diversity and potency of PrAMP action.
  • Item
    Thumbnail Image
    The Effect of Selective D- or Nα-Methyl Arginine Substitution on the Activity of the Proline-Rich Antimicrobial Peptide, Chex1-Arg20
    Li, W ; Sun, Z ; O'Brien-Simpson, NM ; Otvos, L ; Reynolds, EC ; Hossain, MA ; Separovic, F ; Walde, JD (FRONTIERS MEDIA SA, 2017-01-19)
    In vivo pharmacokinetics studies have shown that the proline-rich antimicrobial peptide, A3-APO, which is a discontinuous dimer of the peptide, Chex1-Arg20, undergoes degradation to small fragments at positions Pro6-Arg7 and Val19-Arg20. With the aim of minimizing or abolishing this degradation, a series of Chex1-Arg20 analogs were prepared via Fmoc/tBu solid phase peptide synthesis with D-arginine or, in some cases, peptide backbone Nα-methylated arginine, substitution at these sites. All the peptides were tested for antibacterial activity against the Gram-negative bacterium Klebsiella pneumoniae. The resulting activity of position-7 substitution of Chex1-Arg20 analogs showed that arginine-7 is a crucial residue for maintaining activity against K. pneumoniae. However, arginine-20 substitution had a much less deleterious effect on the antibacterial activity of the peptide. Moreover, none of these peptides displayed any cytotoxicity to HEK and H-4-II-E mammalian cells. These results will aid the development of more effective and stable PrAMPs via judicious amino acid substitutions.
  • Item
    Thumbnail Image
    Proline-rich antimicrobial peptides: potential therapeutics against antibiotic-resistant bacteria
    Li, W ; Tailhades, J ; O'Brien-Simpson, NM ; Separovic, F ; Otvos, L ; Hossain, MA ; Wade, JD (SPRINGER WIEN, 2014-10)
    The increasing resistance of pathogens to antibiotics causes a huge clinical burden that places great demands on academic researchers and the pharmaceutical industry for resolution. Antimicrobial peptides, part of native host defense, have emerged as novel potential antibiotic alternatives. Among the different classes of antimicrobial peptides, proline-rich antimicrobial peptides, predominantly sourced from insects, have been extensively investigated to study their specific modes of action. In this review, we focus on recent developments in these peptides. They show a variety of modes of actions, including mechanism shift at high concentration, non-lytic mechanisms, as well as possessing different intracellular targets and lipopolysaccharide binding activity. Furthermore, proline-rich antimicrobial peptides display the ability to not only modulate the immune system via cytokine activity or angiogenesis but also possess properties of penetrating cell membranes and crossing the blood brain barrier suggesting a role as potential novel carriers. Ongoing studies of these peptides will likely lead to the development of more potent antimicrobial peptides that may serve as important additions to the armoury of agents against bacterial infection and drug delivery.
  • Item
    No Preview Available
    Bacterial Fluorescent-dextran Diffusion Assay
    O’Brien-Simpson, N ; Pantarat, N ; Walsh, K ; Reynolds, E ; Sani, M-A ; Separovic, F (Bio-Protocol, LLC, 2014)
  • Item
    Thumbnail Image
    Fluorescent Ion Efflux Screening Assay for Determining Membrane-Active Peptides
    O'Brien-Simpson, NM ; Li, W ; Pantarat, N ; Hossain, MA ; Separovic, F ; Wade, JD ; Reynolds, EC (CSIRO PUBLISHING, 2017)
    A major global health threat is the emergence of antibiotic-resistant microbes. Coupled with a lack of development of modified antibiotics, there is a need to develop new antimicrobial molecules and screening assays for them. In this study, we provide proof of concept that a large unilamellar vesicle (LUV) method used to study chloride ion efflux facilitated by ionophores and surfactant-like molecules that disrupt membrane integrity can be adapted to identify membrane-interactive antimicrobial peptides (AMPs) and to screen relative activity of AMPs. Lucigenin was encapsulated in LUVs in the presence of Cl– ion (NaCl), which quenches fluorescence, and then incubated with AMPs in 100 mM NaNO3 buffer. Upon AMP membrane interaction or disruption, the Cl– ion is exchanged with the NO3– ion, and the resultant lucigenin fluorescence is indicative of relative AMP activity. Seven AMPs were synthesized by solid-phase peptide chemistry and incubated with LUVs of different phospholipid compositions. Each AMP resulted in lucigenin fluorescence, which was dose dependent, and the relative fluorescence correlated with the minimum inhibitory concentration and minimum bactericidal concentration values for the corresponding peptide. Furthermore, using mammalian model phospholipid LUVs, lucigenin-induced fluorescence also correlated with the AMP cytotoxicity half-maximal inhibitory concentration values. The proline-rich AMP, Chex1-Arg20, which is non-lytic but interacts with the bacterial membrane resulted in lucigenin fluorescence of bacterial membrane model LUVs but not of mammalian membrane model LUVs. The fluorescent ion efflux assay developed here should have applicability for most AMPs and could be tailored to target particular bacterial species membrane composition, potentially leading to the identification of novel membrane-interactive AMPs. The rapid high-throughput method also allows for screening of relative AMP activity and toxicity before biological testing.