School of Chemistry - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 106
  • Item
    No Preview Available
    An approach to assessing the contribution of the high LET effect in strategies for Auger endoradiotherapy
    Lobachevsky, P ; Skene, C ; Munforte, L ; Smith, A ; White, J ; Martin, RF (TAYLOR & FRANCIS LTD, 2023-01-02)
    Purpose: The interest in exploiting Auger emitters in cancer therapy stems from their high linear energy transfer (LET)-type radiation damage to DNA. However, the design of Auger-emitter labeled vehicles that target the Auger cascade specifically to the DNA of tumour cells is challenging. Here we suggest a possible approach to evaluate tumour-targeting Auger-labeled conjugates by assessing the impact of a radioprotector known to be effective in protecting from low LET radiation, but not high LET radiation. Given some similarity between the energy spectrum of Auger electrons and that of secondary electrons from soft X-rays, we report the results of radioprotection experiments with 25 kVp X-rays. Materials and methods: Clonogenic survival curves for cultured human keratinocytes were established for three different irradiation conditions: 137Cs γ-rays, 25 kVp X-rays and 320 kVp X-rays, and the effect of including a new radioprotector, denoted "2PH", was investigated.Results: The extent of radioprotection by 2PH was comparable for all radiation conditions, although RBE was higher (about 1.7) for soft X-rays. Conclusions: Radioprotectors like 2PH will help to evaluate Auger endoradiotherapy strategies, by determining the relative contributions of the high-LET effects (not protected), compared to other components, such as Auger electrons not effectively targeted to DNA.
  • Item
    No Preview Available
    Synthesis of acyloin natural products by Mukaiyama hydration
    Ricca, M ; Zhang, W ; Li, J ; Fellowes, T ; White, JM ; Donnelly, PS ; Rizzacasa, MA (ROYAL SOC CHEMISTRY, 2022-04-27)
    The acyloin natural products are a family of bioactive compounds isolated from fungi and myxobacteria. The total synthesis of 7 members of the acyloin family was achieved via a HWE reaction followed by Mukaiyama-Isayama hydration, using novel Co(II) and Co(III) Schiff base SALPN complexes as catalysts for the key enone hydration step. Furthermore, we have shown that a mild acyloin rearrangement is possible under Mukaiyama hydration conditions, which was crucial in the success of this approach.
  • Item
    No Preview Available
    Pre-targeting amyloid-beta with antibodies for potential molecular imaging of Alzheimer's disease
    Morgan, KA ; de Veer, M ; Miles, LA ; Kelderman, CAA ; McLean, CA ; Masters, CL ; Barnham, KJ ; White, JM ; Paterson, BM ; Donnelly, PS (ROYAL SOC CHEMISTRY, 2023-01-17)
    With the aim of developing the concept of pretargeted click chemistry for the diagnosis of Alzheimer's disease two antibodies specific for amyloid-β were modified to incorporate trans-cyclooctene functional groups. Two bis(thiosemicarbazone) compounds with pendant 1,2,4,5-tetrazine functional groups were prepared and radiolabelled with positron emitting copper-64. The new copper-64 complexes rapidly react with the trans-cyclooctene functionalized antibodies in a bioorthogonal click reaction and cross the blood-brain barrier in mice.
  • Item
    Thumbnail Image
    Bromodomain and extraterminal protein-targeted probe enables tumour visualisation in vivo using positron emission tomography
    Dickmann, CGF ; McDonald, AFF ; Huynh, N ; Rigopoulos, A ; Liu, Z ; Guo, N ; Osellame, LDD ; Gorman, MAA ; Parker, MWW ; Gan, HKK ; Scott, AMM ; Ackermann, U ; Burvenich, IJG ; White, JMM (ROYAL SOC CHEMISTRY, 2023-02-14)
    Bromodomain and extraterminal (BET) proteins, a family of epigenetic regulators, have emerged as important oncology drug targets. BET proteins have not been targeted for molecular imaging of cancer. Here, we report the development of a novel molecule radiolabelled with positron emitting fluorine-18, [18F]BiPET-2, and its in vitro and preclinical evaluation in glioblastoma models.
  • Item
    No Preview Available
    Palladium-Mediated CO2 Extrusion Followed by Insertion of Allenes: Translating Mechanistic Studies to Develop a One-Pot Method for the Synthesis of Alkenes
    Yang, Y ; Spyrou, B ; White, JM ; Canty, AJ ; Donnelly, PS ; O'Hair, RAJ (AMER CHEMICAL SOC, 2022-07-11)
  • Item
    No Preview Available
    Synthesis of the Alkylsulfonate Metabolites Cysteinolic Acid, 3-Amino-2-hydroxypropanesulfonate, and 2,3-Dihydroxypropanesulfonate
    Burchill, L ; Zudich, L ; van der Peet, PL ; White, JM ; Williams, SJ (AMER CHEMICAL SOC, 2022-03-18)
    Chiral hydroxy- and aminohydroxysulfonic acids are widespread in the marine and terrestrial environment. Here we report simple methods for the synthesis of d- and l-cysteinolic acid (from (Boc-d-Cys-OH)2 and (Boc-l-Cys-OH)2, respectively), R- and S-3-amino-2-hydroxypropanesulfonate (from S- and R-epichlorohydrin, respectively), and R- and S-2,3-dihydroxypropanesulfonate (from S- and R-epichlorohydrin, respectively). d-Cysteinolate bile salts were generated by coupling with cholic and chenodeoxycholic acids. A series of single-crystal 3D X-ray structures confirmed the absolute configurations of the aminosulfonates. By comparison of optical rotation, we assign naturally occurring 3-amino-2-hydroxypropanesulfonate from Gateloupia livida as possessing the R-configuration. This simple synthetic approach will support future studies of the occurrence, chemotaxonomic distribution, and metabolism of these alkylsulfonates.
  • Item
    No Preview Available
    Identification of Anthelmintic Bishomoscalarane Sesterterpenes from the Australian Marine Sponge Phyllospongia bergquistae and Structure Revision of Phyllolactones A-D
    Hayes, S ; Taki, AC ; Lum, KY ; Byrne, JJ ; White, JM ; Ekins, MG ; Gasser, RB ; Davis, RA (AMER CHEMICAL SOC, 2022-06-21)
    High-throughput screening of the NatureBank marine extract library (7616 samples) identified an extract derived from the Australian marine sponge Phyllospongia bergquistae with activity against Hemonchus contortus (barber's pole worm), an economically important parasitic nematode. Bioassay-guided fractionation of the CH2Cl2/MeOH extract from P. bergquistae led to the purification of four known bishomoscalarane sesterterpenes, phyllolactones A-D (1-4). The absolute configurations of phyllolactones B (2) and C (3) were determined by single-crystal X-ray diffraction analysis; literature and data analyses revealed the need for these chemical structures to be revised. Compounds 2-4 induced a lethal, skinny (Ski) phenotype in larvae of H. contortus at concentrations between 5.3 and 10.1 μM. These data indicate that the bishomoscalarane sesterterpene structure class warrants further investigation for nematocidal or nematostatic activity.
  • Item
    Thumbnail Image
    Protection of Boronic Acids Using a Tridentate Aminophenol ONO Ligand for Selective Suzuki-Miyaura Coupling
    Simon, PM ; Castillo, JO ; Owyong, TC ; White, JM ; Saker Neto, N ; Wong, WWH (AMER CHEMICAL SOC, 2023-01-25)
    Boronic acid protecting group chemistry powerfully enhances the versatility of Suzuki-Miyaura cross-coupling. Prominent examples include trifluoroborate salts, N-methyliminodiacetic acid (MIDA) boronates, and 1,8-diaminonaphthalene boronamides. In this work, we present a bis(2-hydroxybenzyl)methylamine (BOMA) ligand that forms tridentate complexes with boronic acids much like the MIDA ligand but the deprotection is facilitated by organic acids. The BOMA boronates showed considerable stability in both aqueous base and acid, and a variety of chemoselective reactions were performed on these boronates, including selective Suzuki-Miyaura coupling, palladium-catalyzed borylation, ester hydrolysis, alkylation, lithiation-borylation, and oxidative hydroxydeboronation.
  • Item
    No Preview Available
    Electronic and Steric Effects on the Reactivity of Seleniranium Ions with Alkenes in the Gas Phase
    Brydon, SC ; Thomson, C ; O'Hair, RAJ ; White, JM (AMER CHEMICAL SOC, 2023-01-27)
    Gas phase ion-molecule reactions between seleniranium ions, R-c-SeCH2CH2+, and cis-cyclooctene were used to probe electronic and steric effects of substituents on kinetics and branching ratios. The second-order rate coefficients increased in the order p-OMeC6H4 < C6H5 < p-BrC6H4 < p-CF3C6H4 < m-NO2C6H4, giving a Hammett plot with R2 = 0.98 and ρ = +1.66. The two main pathways include direct transfer of the selenium moiety to the incoming alkene (π-ligand exchange) and the less favored ring-opening by attack at an iranium carbon to give a cis-bicyclic selenonium ion as supported by density functional theory (DFT) calculations. Branching ratios of each pathway indicated that electron-withdrawing groups directed more attack at carbon than selenium in agreement with previous solution-phase results. Increased steric bulk on selenium was investigated by changing the R group from a methyl to t-butyl, which not only shut down π-ligand exchange but also significantly reduced the overall reactivity. Finally, the reactivity of the iranium ion derived from Se-methylselenocysteine was investigated and shown to react faster and favor π-ligand exchange as the leaving group was changed from ethene to acrylic acid.
  • Item
    No Preview Available
    Design of Calcium-Based Metal-Organic Frameworks by the Solvent Effect and Computational Investigation of Their Potential as Drug Carriers
    Alavijeh, RK ; Akhbari, K ; Bernini, MC ; Garcia Blanco, AA ; White, JM (AMER CHEMICAL SOC, 2022-05-04)