School of Chemistry - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 4 of 4
  • Item
    Thumbnail Image
    Mechanisms for the ultrasonic enhancement of dairy whey ultrafiltration
    Muthukumaran, S ; Kentish, SE ; Ashokkumar, M ; Stevens, GW (ELSEVIER SCIENCE BV, 2005-08-01)
  • Item
    Thumbnail Image
    The use of ultrasonic cleaning for ultrafiltration membranes in the dairy industry
    Muthukumaran, S ; Yang, K ; Seuren, A ; Kentish, S ; Ashokkumar, M ; Stevens, GW ; Grieser, F (ELSEVIER SCIENCE BV, 2004-10)
  • Item
    Thumbnail Image
    Effect of surfactants on the rate of growth of an air bubble by rectified diffusion
    Lee, J ; Kentish, S ; Ashokkumar, M (AMER CHEMICAL SOC, 2005-08-04)
    The rectified diffusion growth of a single air bubble levitated in an acoustic field (frequency = 22.35 kHz) in water and in aqueous solutions containing surfactants (sodium dodecyl sulfate and sodium dodecylbenzene sulfonate) was investigated. As reported by Crum (J. Acoust. Soc. Am. 1980, 68, 203), the presence of surfactants at the bubble/liquid interface enhanced the growth rate of the bubble by rectified diffusion. It is suggested in this paper that in addition to the effect of surfactants on the surface tension and interfacial resistance to mass transfer, the effect of surface rheological properties may also contribute to the cause of the enhancement observed in the bubble growth rate.
  • Item
    Thumbnail Image
    Determination of the size distribution of sonoluminescence bubbles in a pulsed acoustic field
    Lee, J ; Ashokkumar, M ; Kentish, S ; Grieser, F (AMER CHEMICAL SOC, 2005-12-07)
    A simple method is described for determining the size of sonoluminescence bubbles generated by acoustic cavitation. The change in the intensity of sonoluminescence, from 4 ms pulses of 515 kHz ultrasound, as a function of the "off" time between acoustic pulses, is the basis of the method. The bubble size determined in water was in the range of 2.8-3.7 mum.