School of Chemistry - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 1055
  • Item
    Thumbnail Image
    The Role of Magnetic Dipole-Dipole Coupling in Quantum Single-Molecule Toroics
    Hymas, K ; Soncini, A (MDPI, 2022-05-01)
    For single-molecule toroics (SMTs) based on noncollinear Ising spins, intramolecular magnetic dipole–dipole coupling favours a head-to-tail vortex arrangement of the semi-classical magnetic moments associated with a toroidal ground state. However, to what extent does this effect survive beyond the semi-classical Ising limit? Here, we theoretically investigate the role of dipolar interactions in stabilising ground-state toroidal moments in quantum Heisenberg rings with and without on-site magnetic anisotropy. For the prototypical triangular SMT with strong on-site magnetic anisotropy, we illustrate that, together with noncollinear exchange, intramolecular magnetic dipole–dipole coupling serves to preserve ground-state toroidicity. In addition, we investigate the effect on quantum tunnelling of the toroidal moment in Kramers and non-Kramers systems. In the weak anisotropy limit, we find that, within some critical ion–ion distances, intramolecular magnetic dipole–dipole interactions, diagonalised over the entire Hilbert space of the quantum system, recover ground-state toroidicity in ferromagnetic and antiferromagnetic odd-membered rings with up to seven sites, and are further stabilised by Dzyaloshinskii–Moriya coupling.
  • Item
    Thumbnail Image
    Cluster Analysis of the EU-27 Countries in Light of the Guiding Principles of the European Green Deal, with Particular Emphasis on Poland
    Rybak, A ; Rybak, A ; Joostberens, J ; Kolev, SD (MDPI, 2022-07-01)
    The article presents a cluster analysis of the EU-27 countries. The clusters were built to identify groups of countries similar to each other in relation to the set of Eurostat indicators from the Climate Change Drivers and Environment and Energy sections. During the research, tools of spatial information systems were used, such as cluster analysis, diagram maps, rasterization and the TSA method. ARIMA prediction models were also used. The research aims to verify our hypotheses. Particular attention was paid to Poland; therefore, it was verified whether the composition of the country’s energy mix translated into excessive emissions of pollutants in relation to other EU countries. Furthermore, the level of integration of energy markets in the European Union and its changes over time were examined. The authors also proposed a methodology to create detailed energy and climate strategies for designated clusters. The results of the presented research are particularly important in light of recent events in Ukraine.
  • Item
    Thumbnail Image
    Novel Anti-Neuroinflammatory Properties of a Thiosemicarbazone-Pyridylhydrazone Copper(II) Complex
    Choo, XY ; McInnes, LE ; Grubman, A ; Wasielewska, JM ; Belaya, I ; Burrows, E ; Quek, H ; Martin, JC ; Loppi, S ; Sorvari, A ; Rait, D ; Powell, A ; Duncan, C ; Liddell, JR ; Tanila, H ; Polo, JM ; Malm, T ; Kanninen, KM ; Donnelly, PS ; White, AR (MDPI, 2022-09-01)
    Neuroinflammation has a major role in several brain disorders including Alzheimer's disease (AD), yet at present there are no effective anti-neuroinflammatory therapeutics available. Copper(II) complexes of bis(thiosemicarbazones) (CuII(gtsm) and CuII(atsm)) have broad therapeutic actions in preclinical models of neurodegeneration, with CuII(atsm) demonstrating beneficial outcomes on neuroinflammatory markers in vitro and in vivo. These findings suggest that copper(II) complexes could be harnessed as a new approach to modulate immune function in neurodegenerative diseases. In this study, we examined the anti-neuroinflammatory action of several low-molecular-weight, charge-neutral and lipophilic copper(II) complexes. Our analysis revealed that one compound, a thiosemicarbazone-pyridylhydrazone copper(II) complex (CuL5), delivered copper into cells in vitro and increased the concentration of copper in the brain in vivo. In a primary murine microglia culture, CuL5 was shown to decrease secretion of pro-inflammatory cytokine macrophage chemoattractant protein 1 (MCP-1) and expression of tumor necrosis factor alpha (Tnf), increase expression of metallothionein (Mt1), and modulate expression of Alzheimer's disease-associated risk genes, Trem2 and Cd33. CuL5 also improved the phagocytic function of microglia in vitro. In 5xFAD model AD mice, treatment with CuL5 led to an improved performance in a spatial working memory test, while, interestingly, increased accumulation of amyloid plaques in treated mice. These findings demonstrate that CuL5 can induce anti-neuroinflammatory effects in vitro and provide selective benefit in vivo. The outcomes provide further support for the development of copper-based compounds to modulate neuroinflammation in brain diseases.
  • Item
    Thumbnail Image
    Effective Preparation of [F-18]Flumazenil Using Copper-Mediated Late-Stage Radiofluorination of a Stannyl Precursor
    Haskali, MB ; Roselt, PD ; O'Brien, TJ ; Hutton, CA ; Ali, I ; Vivash, L ; Jupp, B (MDPI, 2022-09-01)
    (1) Background: [18F]Flumazenil 1 ([18F]FMZ) is an established positron emission tomography (PET) radiotracer for the imaging of the gamma-aminobutyric acid (GABA) receptor subtype, GABAA in the brain. The production of [18F]FMZ 1 for its clinical use has proven to be challenging, requiring harsh radiochemical conditions, while affording low radiochemical yields. Fully characterized, new methods for the improved production of [18F]FMZ 1 are needed. (2) Methods: We investigate the use of late-stage copper-mediated radiofluorination of aryl stannanes to improve the production of [18F]FMZ 1 that is suitable for clinical use. Mass spectrometry was used to identify the chemical by-products that were produced under the reaction conditions. (3) Results: The radiosynthesis of [18F]FMZ 1 was fully automated using the iPhase FlexLab radiochemistry module, affording a 22.2 ± 2.7% (n = 5) decay-corrected yield after 80 min. [18F]FMZ 1 was obtained with a high radiochemical purity (>98%) and molar activity (247.9 ± 25.9 GBq/µmol). (4) Conclusions: The copper-mediated radiofluorination of the stannyl precursor is an effective strategy for the production of clinically suitable [18F]FMZ 1.
  • Item
    Thumbnail Image
    Nanoscale magnetometry through quantum control of nitrogen-vacancy centres in rotationally diffusing nanodiamonds
    MACLAURIN, D ; Hall, LT ; Martin, AM ; Hollenberg, LC (IOP Publishing, 2013)
    The confluence of quantum physics and biology is driving a new generation of quantum-based sensing and imaging technology capable of harnessing the power of quantum effects to provide tools to understand the fundamental processes of life. One of the most promising systems in this area is the nitrogen–vacancy centre in diamond—a natural spin qubit which remarkably has all the right attributes for nanoscale sensing in ambient biological conditions. Typically the nitrogen–vacancy qubits are fixed in tightly controlled/isolated experimental conditions. In this work quantum control principles of nitrogen–vacancy magnetometry are developed for a randomly diffusing diamond nanocrystal. We find that the accumulation of geometric phases, due to the rotation of the nanodiamond plays a crucial role in the application of a diffusing nanodiamond as a bio-label and magnetometer. Specifically, we show that a freely diffusing nanodiamond can offer real-time information about local magnetic fields and its own rotational behaviour, beyond continuous optically detected magnetic resonance monitoring, in parallel with operation as a fluorescent biomarker.
  • Item
    Thumbnail Image
    Understanding the Biological Interactions of pH-Swellable Nanoparticles
    Kermaniyan, SS ; Chen, M ; Zhang, C ; Smith, SA ; Johnston, APR ; Such, C ; Such, GK (WILEY-V C H VERLAG GMBH, 2022-03-04)
    pH-responsive nanoparticles have generated significant interest for use as drug delivery systems due to their potential for inducible release at low pH. The pH variation from the bloodstream (pH 7.4) to intracellular compartments of cells called endosomes/lysosomes (pH < 5.0) has been of particular interest. However, one of the limitations with nanoparticle delivery systems is the inability to migrate out of these compartments to the cytosol or other organelles, via a process termed endosomal escape. Previous studies have postulated that pH-responsive nanoparticles can facilitate endosomal escape through a range of mechanisms including membrane interaction, pH-induced swelling, and the proton-sponge effect. In this study, a series of pH-swellable nanoparticles (85-100 nm) are designed and their impact on biological interactions, particularly endosomal escape, are investigated. The particles exhibit tunable pH-induced swelling (from 120% to 200%) and have good buffering capacity. The cellular association is studied using flow cytometry and endosomal escape is determined using a calcein leakage assay. Interestingly, no endosomal escape with all nanoparticle formulations is found, which suggests there are limitations with both the proton-sponge effect and pH-induced swelling mechanism as the primary methods for inducing endosomal escape.
  • Item
    Thumbnail Image
    Site Specific Preparation of N-Glycosylated Peptides: Thioamide-Directed Activation of Aspartate
    Taresh, AB ; Hutton, CA (WILEY-V C H VERLAG GMBH, 2022-09-21)
    A site-specific method for the preparation of N-glycosylated peptides is described. Incorporation of a peptide backbone thioamide linkage adjacent to an Asp residue facilitates a AgI -promoted, site-specific conversion to N-glycosylated Asn residues in peptides.
  • Item
    Thumbnail Image
    Intensity Modulated Photocurrent Microspectrosopy for Next Generation Photovoltaics
    Laird, JS ; Ravishankar, S ; Rietwyk, KJ ; Mao, W ; Bach, U ; Smith, TA (WILEY-V C H VERLAG GMBH, 2022-08-16)
    In this report, a large-area laser beam induced current microscope that has been adapted to perform intensity modulated photocurrent spectroscopy (IMPS) in an imaging mode is described. Microscopy-based IMPS method provides a spatial resolution of the frequency domain response of the solar cell, allowing correlation of the optoelectronic response with a particular interface, bulk material, specific transport layer, or transport parameter. The system is applied to study degradation effects in back-contact perovskite cells where it is found to readily differentiate areas based on their markedly different frequency response. Using the diffusion-recombination model, the IMPS response is modeled for a sandwich structure and extended for the special case of lateral diffusion in a back-contact cell. In the low-frequency limit, the model is used to calculate spatial maps of the carrier ambipolar diffusion length. The observed frequency response of IMPS images is then discussed.
  • Item
    Thumbnail Image
    Pretty Cool Beetles: Can Manipulation of Visible and Near-Infrared Sunlight Prevent Overheating?
    Ospina-Rozo, L ; Subbiah, J ; Seago, A ; Stuart-Fox, D (OXFORD UNIV PRESS, 2022-09-13)
    Passive thermoregulation is an important strategy to prevent overheating in thermally challenging environments. Can the diversity of optical properties found in Christmas beetles (Rutelinae) be an advantage to keep cool? We measured changes in temperature of the elytra of 26 species of Christmas beetles, exclusively due to direct radiation from a solar simulator in visible (VIS: 400-700 nm) and near infrared (NIR: 700-1700 nm) wavebands. Then, we evaluated if the optical properties of elytra could predict their steady state temperature and heating rates, while controlling for size. We found that higher absorptivity increases the heating rate and final steady state of the beetle elytra in a biologically significant range (3 to 5°C). There was substantial variation in the absorptivity of Christmas beetle elytra; and this variation was achieved by different combinations of reflectivity and transmissivity in both VIS and NIR. Size was an important factor predicting the change in temperature of the elytra after 5 min (steady state) but not maximum heating rate. Lastly, we show that the presence of the elytra covering the body of the beetle can reduce heating of the body itself. We propose that beetle elytra can act as a semi-insulating layer to enable passive thermoregulation through high reflectivity of elytra, resulting in low absorptivity of solar radiation. Alternatively, if beetle elytra absorb a high proportion of solar radiation, they may reduce heat transfer from the elytra to the body through behavioral or physiological mechanisms.
  • Item