School of Chemistry - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 1322
  • Item
    Thumbnail Image
    Molecularly isolated perylene diimides enable both strong exciton-photon coupling and high photoluminescence quantum yield
    Sabatini, RP ; Zhang, B ; Gupta, A ; Leoni, J ; Wong, WWH ; Lakhwani, G (Royal Society of Chemistry, 2019-03-14)
    Strong coupling in organic media holds the promise of efficient room temperature polariton lasing with solution-processed materials. Currently, however, only five pure-organic materials have been shown to demonstrate polariton lasing. A major challenge is to achieve high exciton–photon coupling while maintaining high photoluminescence quantum yield. Here, we utilize a series of diimide perylene materials that possess sterically hindered substituents, dispersed within a polymer matrix. The rigid structures prevent aggregation and allow high photoluminescence quantum yield (PLQY) at large dye loadings. We demonstrate that these systems can exhibit substantial Rabi splittings at dye loadings that yield film PLQYs of up to 85%, making these perylene derivatives promising materials for polariton lasers.
  • Item
    Thumbnail Image
    Highly Efficient Luminescent Solar Concentrators by Selective Alignment of Donor-Emitter Fluorophores
    Zhang, B ; Gao, C ; Soleimaninejad, H ; White, JM ; Smith, TA ; Jones, DJ ; Ghiggino, KP ; Wong, WWH (AMER CHEMICAL SOC, 2019-04-23)
    Vertically aligning fluorophores to the surface of a waveguide is known to be an effective approach to improve the optical quantum efficiency (OQE) of luminescent solar concentrators (LSCs). While the chromophore alignment assists waveguiding of the emitted photons to the LSC edges, it also significantly reduces the light-harvesting properties of the LSC. We report here a fluorophore pair consisting of a sphere-shaped energy donor and a rod-shaped emitter that was incorporated in LSCs to provide selective fluorophore alignment to address the reduced incident-light absorption issue. A liquid-crystal polymer matrix was used to perpendicularly align the rod-shaped acceptors to a favorable orientation for light guiding, while the sphere-shaped donor was randomly oriented to maintain its light-absorbing properties. The OQE of LSC devices with this selectively aligned donor-acceptor fluorophore system is 78% without significant loss of light-harvesting capability.
  • Item
    Thumbnail Image
    Tetrabenzo[5.7]fulvalene: a forgotten aggregation induced-emission luminogen
    Crocker, RD ; Zhang, B ; Pace, DP ; Wong, WWH ; Nguyen, TV (ROYAL SOC CHEMISTRY, 2019-10-04)
    Tetrabenzo[5.7]fulvalene, one of the first recognized stable members of mixed fulvalenes, has attracted widespread interest for its remarkable structure. However, little has been known about its photoactivity, most likely owing to its very weak luminescence in the solution state. Here we show for the first time that this compound exhibits aggregation-induced emission (AIE) properties. Its photoluminescence and X-ray crystal structure reveal an interesting mechanism of the AIE phenomenon.
  • Item
    Thumbnail Image
    Intramolecular Versus Intermolecular Triplet Fusion in Multichromophoric Photochemical Upconversion
    Gao, C ; Prasad, SKK ; Zhang, B ; Dvorak, M ; Tayebjee, MJY ; McCamey, DR ; Schmidt, TW ; Smith, TA ; Wong, WWH (AMER CHEMICAL SOC, 2019-08-22)
    Photon upconversion is a process that creates high-energy photons under low photon energy excitation. The effect of molecular geometry on the triplet fusion upconversion process has been investigated in this work through the design and synthesis of four new 9,10-diphenylanthracene (DPA) derivatives by employing platinum octaethylporphyrin as the triplet sensitizer. These new emitter molecules containing multiple DPA subunits linked together via a central benzene core exhibit high fluorescence quantum yields. Interestingly, large differences in the triplet fusion upconversion performance were observed between the derivatives with the meta-substituted dimer showing the closest performance to the DPA reference. The differences are discussed in terms of the statistical probability for obtaining a high-energy singlet excited state from triplet fusion, f, for both inter- and intramolecular processes and the effect of magnetic field on the upconversion efficiency. These results demonstrate the challenges to be overcome in improving triplet fusion upconversion efficiency based on multichromophoric emitter systems.
  • Item
    Thumbnail Image
    Triplet fusion upconversion using sterically protected 9,10-diphenylanthracene as the emitter
    Gao, C ; Zhang, B ; Hall, CR ; Li, L ; Chen, Y ; Zeng, Y ; Smith, TA ; Wong, WWH (ROYAL SOC CHEMISTRY, 2020-03-21)
    Improving the efficiency of triplet fusion upconversion (TF-UC) in the solid-state is still challenging due to the aggregation and phase separation of chromophores. In this work, two 9,10-diphenylanthracene (DPA) derivatives based on the modification of the 9,10-phenyl rings with bulky isopropyl groups (bDPA-1 and bDPA-2) were used as emitters. By using platinum octaethylporphyrin (PtOEP) as the sensitizer, TF-UC performance was comprehensively investigated in 3 media: toluene solution, polyurethane thin film and nano/micro-crystals in a polyvinyl alcohol matrix. Only a small difference in upconversion efficiency between the bulky DPAs and the DPA reference was observed in toluene solution and polyurethane thin film. However, a large improvement of TF-UC quantum yield was achieved in bDPA-2/PtOEP crystals (ΦUC = (0.92 ± 0.05)%) with a low excitation intensity threshold (52 mW cm-2) compared to that of DPA/PtOEP crystals (ΦUC = (0.09 ± 0.03)%). This difference was largely attributed to improved dispersibility of the PtOEP sensitizer in the bDPA-2 emitter crystals. The bulky DPAs also show excellent stability under UV irradiation with exposure to oxygen compared to DPA. These results provide a strategy for developing efficient solid-state TF-UC systems based on nano/micro-particles of emitter-sensitizer mixtures.
  • Item
    Thumbnail Image
    Extended Reichardt's Dye-Synthesis and Solvatochromic Properties.
    Franzese, S ; Saker Neto, N ; Wong, WWH (Wiley, 2024-04-08)
    Three new pyridinium-phenolate dyes based on the benchmark solvatochromic dye Betaine 30 were synthesised. The dyes contained phenylene spacers between the donor and acceptor groups. Their UV-Vis absorption spectra were measured, with the dyes showing strong negative solvatochromic behaviour comparable to that of Betaine 30. These results stood in contrast to the behaviour of the π-extended dye Betaine 21, originally reported in 1963. This dye was synthesised and found to be significantly more solvatochromic than previously reported but prone to degrade. All π-extended dyes synthesised were found to be unstable in certain solvents. Although the increased distance between donor and acceptor did not enhance solvatochromism to the extent predicted, it was still determined that the reduced planarity caused by a phenylene spacer is not as detrimental as believed.
  • Item
    Thumbnail Image
    Simple improvements to Gilch synthesis and molecular weight modulation of MEH-PPV
    O'shea, R ; Wong, WWH (Royal Society of Chemistry, 2020-04-28)
    The solvent and temperature used in the Gilch synthesis of poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) were varied to achieve an improved set of reaction conditions. A range of molecular weights from 20 to 500 kg mol−1 were obtained in moderate to near-quantitative yields. The best conditions for producing low molecular weight MEH-PPV (32 kg mol−1, 97% yield) was to use n-pentane as the reaction solvent at 25 °C. For high molecular weight (397 kg mol−1, 65% yield), toluene at 55 °C gave the best result. The photophysical properties for all MEH-PPV samples were examined and no significant variation was found between samples obtained under different polymerization conditions.
  • Item
    Thumbnail Image
    Competitive Triplet Formation and Recombination in Crystalline Films of Perylenediimide Derivatives: Implications for Singlet Fission
    Masoomi-Godarzi, S ; Hall, CR ; Zhang, B ; Gregory, MA ; White, JM ; Wong, WWH ; Ghiggino, KP ; Smith, TA ; Jones, DJ (AMER CHEMICAL SOC, 2020-05-28)
    Developing photostable compounds that undergo quantitative singlet fission (SF) is a key challenge. As SF necessitates electron transfer between neighboring molecules, the SF rate is highly sensitive to intermolecular coupling in the solid state. We investigate SF in thin films for a series of perylenediimide (PDI) molecules. By adding different substituents at the imide positions, the packing of the molecules in the solid state can be changed. The relationship between SF parameters and the stacked geometry in PDI films is investigated, with two-electron direct coupling found to be the main SF mechanism. Time-resolved emission and transient absorption data show that all of the PDI films undergo SF although with different rates and yields varying from 35 to 200%. The results show that PDI1 and 2, which are stacked PDI pairs twisted out of alignment along the highest occupied molecular orbital to lowest unoccupied molecular orbital transition, exhibit faster and more efficient SF up to 200% yield. We demonstrate that both triplet formation and decay rates are highly sensitive to the ordering of the molecules within a film. The results of this study will assist in the design of optimized structures with a fast SF rate and low recombination rate that are required for useful light harvesting applications.
  • Item
    Thumbnail Image
    FRET-enhanced photoluminescence of perylene diimides by combining molecular aggregation and insulation
    Zhang, B ; Lyskov, I ; Wilson, LJ ; Sabatini, RP ; Manian, A ; Soleimaninejad, H ; White, JM ; Smith, TA ; Lakhwani, G ; Jones, DJ ; Ghiggino, KP ; Russo, SP ; Wong, WWH (Royal Society of Chemistry, 2020-07-14)
    The photoluminescence quantum yield (ϕPL) of perylene diimide derivatives (PDIs) is often limited by aggregation caused quenching (ACQ) at high concentration or in the neat solid-state. Energy transfer in high dye concentration systems is also a key factor in determining ϕPL as a result of energy funneling to trap sites in the sample. By tuning the substituents, we present two classes of PDIs with aggregation and insulation of the PDI core. By combining these fluorophores in a polymer film, we demonstrate highly emissive samples (85% ϕPL) at high concentration (140 mM or 20% w/w). Experimental and theoretical studies provide insight into why such a combination is necessary to achieve high ϕPL. While insulated fluorophores maintain respectable ϕPL at high concentration, an improved ϕPL can be achieved in the presence of appropriately oriented fluorophore aggregates as emissive traps. The theoretical calculations show that the relative orientation of aggregated monomers can result in energetic separation of localized states from the charge-transfer and bi-excitonic states thereby enabling high ϕPL.
  • Item
    Thumbnail Image
    Bilirubin analogues as model compounds for exciton coupling
    Lyskov, I ; Anda, A ; Wong, YX ; Tilley, AJ ; Hall, CR ; Thia, J ; Russo, SP ; Wong, WWH ; Cole, JH ; Smith, TA (ROYAL SOC CHEMISTRY, 2020-07-21)
    A series of phycobilin analogues have been investigated in terms of coupled excitonic systems. These compounds consist of a monomer, a tetrapyrrole structurally similar to bilirubin (bR), and two conjugated bR analogues. Spectroscopic and computational methods have been used to investigate the degree of interchromophore coupling. We find the synthesised bR analogue shows stronger excitonic coupling than bR, owing to a different molecular geometry. The excitonic coupling in the conjugated molecules can be controlled by modifying the bridge side-group. New computed energy levels for bR using the DFT/MRCI method are also presented, which improve on published values and re-assign the character of excited singlet states.