School of Chemistry - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 8 of 8
  • Item
    Thumbnail Image
    Engineering Particles for Therapeutic Delivery: Prospects and Challenges
    Yan, Y ; Such, GK ; Johnston, APR ; Best, JP ; Caruso, F (AMER CHEMICAL SOC, 2012-05)
    Nanoengineered particles that can facilitate drug formulation and passively target tumors have reached the clinic in recent years. These early successes have driven a new wave of significant innovation in the generation of advanced particles. Recent developments in enabling technologies and chemistries have led to control over key particle properties, including surface functionality, size, shape, and rigidity. Combining these advances with the rapid developments in the discovery of many disease-related characteristics now offers new opportunities for improving particle specificity for targeted therapy. In this Perspective, we summarize recent progress in particle-based therapeutic delivery and discuss important concepts in particle design and biological barriers for developing the next generation of particles.
  • Item
    Thumbnail Image
    Mechanically Tunable, Self-Adjuvanting Nanoengineered Polypeptide Particles
    Cui, J ; De Rose, R ; Best, JP ; Johnston, APR ; Alcantara, S ; Liang, K ; Such, GK ; Kent, SJ ; Caruso, F (WILEY-V C H VERLAG GMBH, 2013-07-05)
    DNA-loaded polypeptide particles are prepared via templated assembly of mesoporous silica for the delivery of adjuvants. The elasticity and cargo-loading capacity of the obtained particles can be tuned by the amount of cross-linker used to stabilize the polypeptide particles. The use of polypeptide particles as biocarriers provides a promising method for vaccine delivery.
  • Item
    Thumbnail Image
    Targeting Cancer Cells: Controlling the Binding and Internalization of Antibody-Functionalized Capsules
    Johnston, APR ; Kamphuis, MMJ ; Such, GK ; Scott, AM ; Nice, EC ; Heath, JK ; Caruso, F (AMER CHEMICAL SOC, 2012-08)
    The development of nanoengineered particles, such as polymersomes, liposomes, and polymer capsules, has the potential to offer significant advances in vaccine and cancer therapy. However, the effectiveness of these carriers has the potential to be greatly improved if they can be specifically delivered to target cells. We describe a general method for functionalizing nanoengineered polymer capsules with antibodies using click chemistry and investigate their interaction with cancer cells in vitro. The binding efficiency to cells was found to be dependent on both the capsule-to-cell ratio and the density of antibody on the capsule surface. In mixed cell populations, more than 90% of target cells bound capsules when the capsule-to-target cell ratio was 1:1. Strikingly, greater than 50% of target cells exhibited capsules on the cell surface even when the target cells were present as less than 0.1% of the total cell population. Imaging flow cytometry was used to quantify the internalization of the capsules, and the target cells were found to internalize capsules efficiently. However, the role of the antibody in this process was determined to enhance accumulation of capsules on the cell surface rather than promote endocytosis. This represents a significant finding, as this is the first study into the role antibodies play in internalization of such capsules. It also opens up the possibility of targeting these capsules to cancer cells using targeting molecules that do not trigger an endocytic pathway. We envisage that this approach will be generally applicable to the specific targeting of a variety of nanoengineered materials to cells.
  • Item
    Thumbnail Image
    Endocytic pH-Triggered Degradation of Nanoengineered Multilayer Capsules
    Liang, K ; Such, GK ; Johnston, APR ; Zhu, Z ; Ejima, H ; Richardson, JJ ; Cui, J ; Caruso, F (WILEY-V C H VERLAG GMBH, 2014-03)
    The synthesis of cross-linker free layer-by-layer (LbL) capsules that solely utilize cellular pH variations as a trigger to specifically deconstruct and subsequently release cargo in cells is reported. These capsules demonstrate retention of water-soluble therapeutic molecules as small as 500 Da at extracellular pH. Triggered capsule degradation and release of cargo is observed within 30 min of cell uptake.
  • Item
    Thumbnail Image
    Fundamental Studies of Hybrid Poly(2-(diisopropylamino)ethyl methacrylate)/Poly(N-vinylpyrrolidone) Films and Capsules
    Ng, SL ; Best, JP ; Kempe, K ; Liang, K ; Johnston, APR ; Such, GK ; Caruso, F (AMER CHEMICAL SOC, 2014-07)
    Hybrid and multicompartment carriers are of significant interest for the development of next-generation therapeutic drug carriers. Herein, fundamental investigations on layer-by-layer (LbL) capsules consisting of two different polymers are presented. The hybrid systems were designed to have pH-responsive, charge-shifting poly(2-(diisopropylamino)ethyl methacrylate) (PDPA) inner layers and low-fouling poly(N-vinylpyrrolidone) (PVPON) outer layers. Planar hybrid films with different layer ratios were studied by quartz crystal microgravimetry (QCM) and atomic force microscopy (AFM). The information obtained was translated to particulate templates to prepare hybrid capsules, which were stabilized by click chemistry. The charge-shifting behavior of PDPA improved the cargo encapsulation and initial retention of a model CpG cargo, while outer layers of PVPON improved biofouling properties compared to single-component PDPA capsules. The results demonstrate the need to understand and design multifunctional systems that can successfully embody different functionalities in a single, stable construct for the fabrication of next-generation drug and gene delivery carriers aimed at overcoming the challenges encountered in biological systems.
  • Item
    Thumbnail Image
    Tuning Particle Biodegradation through Polymer-Peptide Blend Composition
    Gunawan, ST ; Kempe, K ; Such, GK ; Cui, J ; Liang, K ; Richardson, JJ ; Johnston, APR ; Caruso, F (AMER CHEMICAL SOC, 2014-12)
    We report the preparation of polymer-peptide blend replica particles via the mesoporous silica (MS) templated assembly of poly(ethylene glycol)-block-poly(2-diisopropylaminoethyl methacrylate-co-2-(2-(2-(prop-2-ynyloxy)ethoxy)ethoxy)ethyl methacrylate) (PEG45-b-P(DPA55-co-PgTEGMA4)) and poly(l-histidine) (PHis). PEG45-b-P(DPA55-co-PgTEGMA4) was synthesized by atom transfer radical polymerization (ATRP), and was coinfiltrated with PHis into poly(methacrylic acid) (PMA)-coated MS particles assembled from different peptide-to-polymer ratios (1:1, 1:5, 1:10, or 1:15). Subsequent removal of the sacrificial templates and PMA resulted in monodisperse, colloidally stable, noncovalently cross-linked polymer-peptide blend replica particles that were stabilized by a combination of hydrophobic interactions between the PDPA and the PHis, hydrogen bonding between the PEG and PHis backbone, and π-π stacking of the imidazole rings of PHis side chains at physiological pH (pH ∼ 7.4). The synergistic charge-switchable properties of PDPA and PHis, and the enzymatic degradability of PHis, make these particles responsive to pH and enzymes. In vitro studies, in simulated endosomal conditions and inside cells, demonstrated that particle degradation kinetics could be engineered (from 2 to 8 h inside dendritic cells) based on simple adjustment of the peptide-to-polymer ratio used.
  • Item
    Thumbnail Image
    Interfacing Materials Science and Biology for Drug Carrier Design
    Such, GK ; Yan, Y ; Johnston, APR ; Gunawan, ST ; Caruso, F (WILEY-V C H VERLAG GMBH, 2015-04-08)
    Over the last ten years, there has been considerable research interest in the development of polymeric carriers for biomedicine. Such delivery systems have the potential to significantly reduce side effects and increase the bioavailability of poorly soluble therapeutics. The design of carriers has relied on harnessing specific variations in biological conditions, such as pH or redox potential, and more recently, by incorporating specific peptide cleavage sites for enzymatic hydrolysis. Although much progress has been made in this field, the specificity of polymeric carriers is still limited when compared with their biological counterparts. To synthesize the next generation of carriers, it is important to consider the biological rationale for materials design. This requires a detailed understanding of the cellular microenvironments and how these can be harnessed for specific applications. In this review, several important physiological cues in the cellular microenvironments are outlined, with a focus on changes in pH, redox potential, and the types of enzymes present in specific regions. Furthermore, recent studies that use such biologically inspired triggers to design polymeric carriers are highlighted, focusing on applications in the field of therapeutic delivery.
  • Item
    No Preview Available
    Synthesis and functionalization of nanoengineered materials using click chemistry
    Such, GK ; Johnston, APR ; Liang, K ; Caruso, F (PERGAMON-ELSEVIER SCIENCE LTD, 2012-07)