School of Chemistry - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 9 of 9
  • Item
    No Preview Available
    Widespread remodeling of proteome solubility in response to different protein homeostasis stresses
    Sui, X ; Pires, DEV ; Ormsby, AR ; Cox, D ; Nie, S ; Vecchi, G ; Vendruscolo, M ; Ascher, DB ; Reid, GE ; Hatters, DM (National Academy of Sciences, 2020-02-04)
    The accumulation of protein deposits in neurodegenerative diseases has been hypothesized to depend on a metastable subproteome vulnerable to aggregation. To investigate this phenomenon and the mechanisms that regulate it, we measured the solubility of the proteome in the mouse Neuro2a cell line under six different protein homeostasis stresses: 1) Huntington’s disease proteotoxicity, 2) Hsp70, 3) Hsp90, 4) proteasome, 5) endoplasmic reticulum (ER)-mediated folding inhibition, and 6) oxidative stress. Overall, we found that about one-fifth of the proteome changed solubility with almost all of the increases in insolubility were counteracted by increases in solubility of other proteins. Each stress directed a highly specific pattern of change, which reflected the remodeling of protein complexes involved in adaptation to perturbation, most notably, stress granule (SG) proteins, which responded differently to different stresses. These results indicate that the protein homeostasis system is organized in a modular manner and aggregation patterns were not correlated with protein folding stability (ΔG). Instead, distinct cellular mechanisms regulate assembly patterns of multiple classes of protein complexes under different stress conditions.
  • Item
    No Preview Available
    Cardiolipin is required for membrane docking of mitochondrial ribosomes and protein synthesis
    Lee, RG ; Gao, J ; Siira, SJ ; Shearwood, A-M ; Ermer, JA ; Hofferek, V ; Mathews, JC ; Zheng, M ; Reid, GE ; Rackham, O ; Filipovska, A (COMPANY BIOLOGISTS LTD, 2020-07-01)
    The mitochondrial inner membrane contains a unique phospholipid known as cardiolipin (CL), which stabilises the protein complexes embedded in the membrane and supports its overall structure. Recent evidence indicates that the mitochondrial ribosome may associate with the inner membrane to facilitate co-translational insertion of the hydrophobic oxidative phosphorylation (OXPHOS) proteins into the inner membrane. We generated three mutant knockout cell lines for the CL biosynthesis gene Crls1 to investigate the effects of CL loss on mitochondrial protein synthesis. Reduced CL levels caused altered mitochondrial morphology and transcriptome-wide changes that were accompanied by uncoordinated mitochondrial translation rates and impaired respiratory chain supercomplex formation. Aberrant protein synthesis was caused by impaired formation and distribution of mitochondrial ribosomes. Reduction or loss of CL resulted in divergent mitochondrial and endoplasmic reticulum stress responses. We show that CL is required to stabilise the interaction of the mitochondrial ribosome with the membrane via its association with OXA1 (also known as OXA1L) during active translation. This interaction facilitates insertion of newly synthesised mitochondrial proteins into the inner membrane and stabilises the respiratory supercomplexes.
  • Item
    Thumbnail Image
    Effect of Expression of Human Glucosylceramidase 2 Isoforms on Lipid Profiles in COS-7 Cells
    Jatooratthawichot, P ; Talabnin, C ; Ngiwsara, L ; Rustam, YH ; Svasti, J ; Reid, GE ; Ketudat Cairns, JR (MDPI AG, 2020-12-01)
    Glucosylceramide (GlcCer) is a major membrane lipid and the precursor of gangliosides. GlcCer is mainly degraded by two enzymes, lysosomal acid β-glucosidase (GBA) and nonlysosomal β-glucosidase (GBA2), which may have different isoforms because of alternative splicing. To understand which GBA2 isoforms are active and how they affect glycosphingolipid levels in cells, we expressed nine human GBA2 isoforms in COS-7 cells, confirmed their expression by qRT-PCR and Western blotting, and assayed their activity to hydrolyze 4-methylumbelliferyl-β-D-glucopyranoside (4MUG) in cell extracts. Human GBA2 isoform 1 showed high activity, while the other isoforms had activity similar to the background. Comparison of sphingolipid levels by ultra-high resolution/accurate mass spectrometry (UHRAMS) analysis showed that isoform 1 overexpression increased ceramide and decreased hexosylceramide levels. Comparison of ratios of glucosylceramides to the corresponding ceramides in the extracts indicated that GBA2 isoform 1 has broad specificity for the lipid component of glucosylceramide, suggesting that only one GBA2 isoform 1 is active and affects sphingolipid levels in the cell. Our study provides new insights into how increased breakdown of GlcCer affects cellular lipid metabolic networks.
  • Item
    Thumbnail Image
    Quantitative lipidomic analysis of Ascaris suum
    Wang, T ; Nie, S ; Ma, G ; Vlaminck, J ; Geldhof, P ; Williamson, NA ; Reid, GE ; Gasser, RB ; Cappello, M (PUBLIC LIBRARY SCIENCE, 2020-12-01)
    Ascaris is a soil-transmitted nematode that causes ascariasis, a neglected tropical disease affecting predominantly children and adolescents in the tropics and subtropics. Approximately 0.8 billion people are affected worldwide, equating to 0.86 million disability-adjusted life-years (DALYs). Exploring the molecular biology of Ascaris is important to gain a better understanding of the host-parasite interactions and disease processes, and supports the development of novel interventions. Although advances have been made in the genomics, transcriptomics and proteomics of Ascaris, its lipidome has received very limited attention. Lipidomics is an important sub-discipline of systems biology, focused on exploring lipids profiles in tissues and cells, and elucidating their biological and metabolic roles. Here, we characterised the lipidomes of key developmental stages and organ systems of Ascaris of porcine origin via high throughput LC-MS/MS. In total, > 500 lipid species belonging to 18 lipid classes within three lipid categories were identified and quantified–in precise molar amounts in relation to the dry weight of worm material–in different developmental stages/sexes and organ systems. The results showed substantial differences in the composition and abundance of lipids with key roles in cellular processes and functions (e.g. energy storage regulation and membrane structure) among distinct stages and among organ systems, likely reflecting differing demands for lipids, depending on stage of growth and development as well as the need to adapt to constantly changing environments within and outside of the host animal. This work provides the first step toward understanding the biology of lipids in Ascaris, with possibilities to work toward designing new interventions against ascariasis.
  • Item
    Thumbnail Image
    Arginine in C9ORF72 Dipolypeptides Mediates Promiscuous Proteome Binding and Multiple Modes of Toxicity
    Radwan, M ; Ang, C-S ; Ormsby, AR ; Cox, D ; Daly, JC ; Reid, GE ; Hatters, DM (ELSEVIER, 2020-04)
    C9ORF72-associated Motor Neuron Disease patients feature abnormal expression of 5 dipeptide repeat (DPR) polymers. Here we used quantitative proteomics in a mouse neuronal-like cell line (Neuro2a) to demonstrate that the Arg residues in the most toxic DPRS, PR and GR, leads to a promiscuous binding to the proteome compared with a relative sparse binding of the more inert AP and GA. Notable targets included ribosomal proteins, translation initiation factors and translation elongation factors. PR and GR comprising more than 10 repeats appeared to robustly stall on ribosomes during translation suggesting Arg-rich peptide domains can electrostatically jam the ribosome exit tunnel during synthesis. Poly-GR also recruited arginine methylases, induced hypomethylation of endogenous proteins, and induced a profound destabilization of the actin cytoskeleton. Our findings point to arginine in GR and PR polymers as multivalent toxins to translation as well as arginine methylation that may explain the dysfunction of biological processes including ribosome biogenesis, mRNA splicing and cytoskeleton assembly.
  • Item
    Thumbnail Image
    Lipid composition and abundance in the reproductive and alimentary tracts of female Haemonchus contortus
    Wang, T ; Ma, G ; Nie, S ; Williamson, NA ; Reid, GE ; Gasser, RB (BMC, 2020-07-06)
    BACKGROUND: Lipids play essential structural and functional roles in the biology of animals. Studying the composition and abundance of lipids in parasites should assist in gaining a better understanding of their molecular biology, biochemistry and host-parasite interactions. METHODS: Here, we used a combination of high-performance liquid chromatography and mass spectrometric analyses, combined with bioinformatics, to explore the lipid composition and abundance in the reproductive (Rt) and alimentary (At) tracts of Haemonchus contortus. RESULTS: We identified and quantified 320 unique lipid species representing four categories: glycerolipids, glycerophospholipids, sphingolipids and steroid lipids. Glycerolipids (i.e. triradylglycerols) and glycerophospholipids (i.e. glycerophosphocholines) were the most commonly and abundant lipid classes identified and were significantly enriched in Rt and At, respectively. We propose that select parasite-derived lipids in Rt and At of adult female H. contortus are required as an energy source (i.e. triradylglycerol) or are involved in phospholipid biosynthesis (i.e. incorporated fatty acids) and host-parasite interactions (i.e. phospholipids and lysophospholipids). CONCLUSIONS: This work provides a first foundation to explore lipids at the organ-specific and tissue-specific levels in nematodes, and to start to unravel aspects of lipid transport, synthesis and metabolism, with a perspective on discovering new intervention targets.
  • Item
    Thumbnail Image
    A Novel Function of Sphingosine Kinase 2 in the Metabolism of Sphinga-4,14-Diene Lipids
    Couttas, TA ; Rustam, YH ; Song, H ; Qi, Y ; Teo, JD ; Chen, J ; Reid, GE ; Don, AS (MDPI AG, 2020-06-01)
    The number, position, and configuration of double bonds in lipids affect membrane fluidity and the recruitment of signaling proteins. Studies on mammalian sphingolipids have focused on those with a saturated sphinganine or mono-unsaturated sphingosine long chain base. Using high-resolution liquid chromatography-tandem mass spectrometry (LC-MS/MS), we observed a marked accumulation of lipids containing a di-unsaturated sphingadiene base in the hippocampus of mice lacking the metabolic enzyme sphingosine kinase 2 (SphK2). The double bonds were localized to positions C4-C5 and C14-C15 of sphingadiene using ultraviolet photodissociation-tandem mass spectrometry (UVPD-MS/MS). Phosphorylation of sphingoid bases by sphingosine kinase 1 (SphK1) or SphK2 forms the penultimate step in the lysosomal catabolism of all sphingolipids. Both SphK1 and SphK2 phosphorylated sphinga-4,14-diene as efficiently as sphingosine, however deuterated tracer experiments in an oligodendrocyte cell line demonstrated that ceramides with a sphingosine base are more rapidly metabolized than those with a sphingadiene base. Since SphK2 is the dominant sphingosine kinase in brain, we propose that the accumulation of sphingadiene-based lipids in SphK2-deficient brains results from the slower catabolism of these lipids, combined with a bottleneck in the catabolic pathway created by the absence of SphK2. We have therefore uncovered a previously unappreciated role for SphK2 in lipid quality control.
  • Item
    Thumbnail Image
    Type IX Secretion System Cargo Proteins Are Glycosylated at the C Terminus with a Novel Linking Sugar of the Wbp/Vim Pathway
    Veith, PD ; Shoji, M ; O'Hair, RAJ ; Leeming, MG ; Nie, S ; Glew, MD ; Reid, GE ; Nakayama, K ; Reynolds, EC ; Trent, MS (AMER SOC MICROBIOLOGY, 2020-09-01)
    Porphyromonas gingivalis and Tannerella forsythia use the type IX secretion system to secrete cargo proteins to the cell surface where they are anchored via glycolipids. In P. gingivalis, the glycolipid is anionic lipopolysaccharide (A-LPS), of partially known structure. Modified cargo proteins were deglycosylated using trifluoromethanesulfonic acid and digested with trypsin or proteinase K. The residual modifications were then extensively analyzed by tandem mass spectrometry. The C terminus of each cargo protein was amide-bonded to a linking sugar whose structure was deduced to be 2-N-seryl, 3-N-acetylglucuronamide in P. gingivalis and 2-N-glycyl, 3-N-acetylmannuronic acid in T. forsythia The structures indicated the involvement of the Wbp pathway to produce 2,3-di-N-acetylglucuronic acid and a WbpS amidotransferase to produce the uronamide form of this sugar in P. gingivalis The wbpS gene was identified as PGN_1234 as its deletion resulted in the inability to produce the uronamide. In addition, the P. gingivalisvimA mutant which lacks A-LPS was successfully complemented by the T. forsythiavimA gene; however, the linking sugar was altered to include glycine rather than serine. After removal of the acetyl group at C-2 by the putative deacetylase, VimE, VimA presumably transfers the amino acid to complete the biosynthesis. The data explain all the enzyme activities required for the biosynthesis of the linking sugar accounting for six A-LPS-specific genes. The linking sugar is therefore the key compound that enables the attachment of cargo proteins in P. gingivalis and T. forsythia We propose to designate this novel linking sugar biosynthetic pathway the Wbp/Vim pathway.IMPORTANCEPorphyromonas gingivalis and Tannerella forsythia, two pathogens associated with severe gum disease, use the type IX secretion system (T9SS) to secrete and attach toxic arrays of virulence factor proteins to their cell surfaces. The proteins are tethered to the outer membrane via glycolipid anchors that have remained unidentified for more than 2 decades. In this study, the first sugar molecules (linking sugars) in these anchors are identified and found to be novel compounds. The novel biosynthetic pathway of these linking sugars is also elucidated. A diverse range of bacteria that do not have the T9SS were found to have the genes for this pathway, suggesting that they may synthesize similar linking sugars for utilization in different systems. Since the cell surface attachment of virulence factors is essential for virulence, these findings reveal new targets for the development of novel therapies.
  • Item
    Thumbnail Image
    Immiscible inclusion bodies formed by polyglutamine and poly(glycine-alanine) are enriched with distinct proteomes but converge in proteins that are risk factors for disease and involved in protein degradation
    Radwan, M ; Lilley, JD ; Ang, C-S ; Reid, GE ; Hatters, DM ; van der Wel, P (PUBLIC LIBRARY SCIENCE, 2020-08-28)
    Poly(glycine-alanine) (polyGA) is one of the polydipeptides expressed in Frontotemporal Dementia and/or Amyotrophic Lateral Sclerosis 1 caused by C9ORF72 mutations and accumulates as inclusion bodies in the brain of patients. Superficially these inclusions are similar to those formed by polyglutamine (polyQ)-expanded Huntingtin exon 1 (Httex1) in Huntington's disease. Both have been reported to form an amyloid-like structure suggesting they might aggregate via similar mechanisms and therefore recruit the same repertoire of endogenous proteins. When co-expressed in the same cell, polyGA101 and Httex1(Q97) inclusions adopted immiscible phases suggesting different endogenous proteins would be enriched. Proteomic analyses identified 822 proteins in the inclusions. Only 7 were specific to polyGA and 4 specific to Httex1(Q97). Quantitation demonstrated distinct enrichment patterns for the proteins not specific to each inclusion type (up to ~8-fold normalized to total mass). The proteasome, microtubules, TriC chaperones, and translational machinery were enriched in polyGA aggregates, whereas Dnaj chaperones, nuclear envelope and RNA splicing proteins were enriched in Httex1(Q97) aggregates. Both structures revealed a collection of folding and degradation machinery including proteins in the Httex1(Q97) aggregates that are risk factors for other neurodegenerative diseases involving protein aggregation when mutated, which suggests a convergence point in the pathomechanisms of these diseases.