School of Chemistry - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 10
  • Item
    Thumbnail Image
    Oxidative damage of proline residues by nitrate radicals (NO3): a kinetic and product study
    Nathanael, JG ; White, JM ; Richter, A ; Nuske, MR ; Wille, U (ROYAL SOC CHEMISTRY, 2020-09-21)
    Tertiary amides, such as in N-acylated proline or N-methyl glycine residues, react rapidly with nitrate radicals (NO3˙) with absolute rate coefficients in the range of 4-7 × 108 M-1 s-1 in acetonitrile. The major pathway proceeds through oxidative electron transfer (ET) at nitrogen, whereas hydrogen abstraction is only a minor contributor under these conditions. However, steric hindrance at the amide, for example by alkyl side chains at the α-carbon, lowers the rate coefficient by up to 75%, indicating that NO3˙-induced oxidation of amide bonds proceeds through initial formation of a charge transfer complex. Furthermore, the rate of oxidative damage of proline and N-methyl glycine is significantly influenced by its position in a peptide. Thus, neighbouring peptide bonds, particularly in the N-direction, reduce the electron density at the tertiary amide, which slows down the rate of ET by up to one order of magnitude. The results from these model studies suggest that the susceptibility of proline residues in peptides to radical-induced oxidative damage should be considerably reduced, compared with the single amino acid.
  • Item
    Thumbnail Image
    Optimising molecular rotors to AIE fluorophores for mitochondria uptake and retention
    OwYong, TC ; Ding, S ; Wu, N ; Fellowes, T ; Chen, S ; White, JM ; Wong, WWH ; Hong, Y (ROYAL SOC CHEMISTRY, 2020-12-07)
    Molecular rotors exhibit fluorescence enhancement in a confined environment and thus have been used extensively in biological imaging. However, many molecular rotors suffer from small Stokes shift and self-aggregation caused quenching. In this work, we have synthesised a series of red emissive molecular rotors based on cationic α-cyanostilbene. Profoundly enhanced aggregation-induced emission (AIE) properties and greatly widened Stokes shifts can be achieved by molecular engineering. With specificity to stain mitochondria, we demonstrate a simple approach to achieve cell uptake and retention upon tuning the pyridinium substituent of the dyes.
  • Item
    Thumbnail Image
    Oxidative Repair of Pyrimidine Cyclobutane Dimers by Nitrate Radicals (NO3): A Kinetic and Computational Study
    Haddad, T ; Nathanael, JG ; White, JM ; Wille, U (MDPI, 2020-06)
    Pyrimidine cyclobutane dimers are hazardous DNA lesions formed upon exposure of DNA to UV light, which can be repaired through oxidative electron transfer (ET). Laser flash photolysis and computational studies were performed to explore the role of configuration and constitution at the cyclobutane ring on the oxidative repair process, using the nitrate radical (NO3•) as oxidant. The rate coefficients of 8–280 × 107 M−1 s−1 in acetonitrile revealed a very high reactivity of the cyclobutane dimers of N,N’-dimethylated uracil (DMU), thymine (DMT), and 6-methyluracil (DMU6-Me) towards NO3•, which likely proceeds via ET at N(1) as a major pathway. The overall rate of NO3• consumption was determined by (i) the redox potential, which was lower for the syn- than for the anti-configured dimers, and (ii) the accessibility of the reaction site for NO3•. In the trans dimers, both N(1) atoms could be approached from above and below the molecular plane, whereas in the cis dimers, only the convex side was readily accessible for NO3•. The higher reactivity of the DMT dimers compared with isomeric DMU dimers was due to the electron-donating methyl groups on the cyclobutane ring, which increased their susceptibility to oxidation. On the other hand, the approach of NO3• to the dimers of DMU6-Me was hindered by the methyl substituents adjacent to N(1), making these dimers the least reactive in this series.
  • Item
    Thumbnail Image
    Gallium Fluoride Complexes with Acyclic Bispicolinic Ligands as Potential New Fluorine-18 Labelled Imaging Agents
    Koay, H ; Haskali, MB ; Roselt, PD ; White, JM ; Donnelly, PS (WILEY-V C H VERLAG GMBH, 2020-09-22)
    The positron‐emitting radionuclide, fluorine‐18, is used to radiolabel molecules to develop tracers for diagnostic imaging with positron‐emission tomography. There is growing interest in the potential of using strong coordinate bonds between electropositive Ga(III) and electronegative fluoride (≈ 557 kJ/mol) to provide new methods of incorporating fluorine‐18 into molecules. The potential of gallium(III) complexes with acyclic pentadentate bispicolinic acid containing ligands (H2L1–3) to form ternary complexes with fluoride, [GaL1–3F] was investigated with a view to developing new methods for fluorine‐18 radiolabelling. A solid‐phase peptide synthesis approach was used to produce a bispicolinic acid chelator with a lysine residue. Characterisation of [GaL1X] (X = OH, Cl, F) by X‐ray crystallography revealed that L1 acted as dianionic N2O2 donor to the Ga(III) with the fifth site occupied by a monodentate anion (OH–, Cl– or F–). Despite its high stability in aqueous mixture and [D6]DMSO and the straightforward synthesis of [GaL1F], it was only possible to form the radioactive analogue [18F][GaL1F] in low radiochemical yields.
  • Item
    Thumbnail Image
    Evidence that pi-ligand exchange reactions of chalcogen iranium ions proceed via Huckel pseudocoarctate transition states
    Brydon, SC ; da Silva, G ; White, JM (Wiley, 2020-12)
    Despite numerous computational and experimental studies on the π‐ligand exchange reactions of chalcogen iranium ions, a classification of the reaction class has yet to be made. The characteristics of the transition states presented thus far suggested a coarctate nature with two bonds breaking and forming simultaneously at the chalcogen centre. The change in barrier height, depending on the nature of the chalcogen and the alkene, was initially attributed as a shift in the degree of aromaticity moving from pseudocoarctate to coarctate reactions. However, this paper suggests that all 12 reactions under consideration are pseudocoarctate with a Hückel number of delocalised π electrons based on comprehensive studies of the orbital interactions and magnetic properties both at the transition state and along the reaction path. The change in barrier height was largely driven by the electrophilicity of the chalcogen and the strain present in the three‐membered ring rather than a shift in the degree of aromaticity.
  • Item
    Thumbnail Image
    A Molecular Chameleon for Mapping Subcellular Polarity in an Unfolded Proteome Environment
    Owyong, TC ; Subedi, P ; Deng, J ; Hinde, E ; Paxman, JJ ; White, JM ; Chen, W ; Heras, B ; Wong, WWH ; Hong, Y (WILEY-V C H VERLAG GMBH, 2020-06-15)
    Environmental polarity is an important factor that drives biomolecular interactions to regulate cell function. Herein, a general method of using the fluorogenic probe NTPAN-MI is reported to quantify the subcellular polarity change in response to protein unfolding. NTPAN-MI fluorescence is selectively activated upon labeling unfolded proteins with exposed thiols, thereby reporting on the extent of proteostasis. NTPAN-MI also reveals the collapse of the host proteome caused by influenza A virus infection. The emission profile of NTPAN-MI contains information of the local polarity of the unfolded proteome, which can be resolved through spectral phasor analysis. Under stress conditions that disrupt different checkpoints of protein quality control, distinct patterns of dielectric constant distribution in the cytoplasm can be observed. However, in the nucleus, the unfolded proteome was found to experience a more hydrophilic environment across all the stress conditions, indicating the central role of nucleus in the stress response process.
  • Item
    Thumbnail Image
    A Molecular Chameleon for Mapping Subcellular Polarity in an Unfolded Proteome Environment
    Owyong, TC ; Subedi, P ; Deng, J ; Hinde, E ; Paxman, JJ ; White, JM ; Chen, W ; Heras, B ; Wong, WWH ; Hong, Y (Wiley, 2020-06-15)
    Abstract Environmental polarity is an important factor that drives biomolecular interactions to regulate cell function. Herein, a general method of using the fluorogenic probe NTPAN‐MI is reported to quantify the subcellular polarity change in response to protein unfolding. NTPAN‐MI fluorescence is selectively activated upon labeling unfolded proteins with exposed thiols, thereby reporting on the extent of proteostasis. NTPAN‐MI also reveals the collapse of the host proteome caused by influenza A virus infection. The emission profile of NTPAN‐MI contains information of the local polarity of the unfolded proteome, which can be resolved through spectral phasor analysis. Under stress conditions that disrupt different checkpoints of protein quality control, distinct patterns of dielectric constant distribution in the cytoplasm can be observed. However, in the nucleus, the unfolded proteome was found to experience a more hydrophilic environment across all the stress conditions, indicating the central role of nucleus in the stress response process.
  • Item
    Thumbnail Image
    Automated synthesis of 18F radiolabelled indole containing Oncrasin-like molecules; a comparison of iodonium salts and boronic ester chemistry
    McDonald, AF ; Goh, YW ; White, JM ; Scott, AM ; Ackermann, U (SPRINGERNATURE, 2020-11-09)
    BACKGROUND: Oncrasin-1 is a small molecule which was identified from a screen of KRAS mutant cancer cells and has shown specificity for KRAS mutant cell killing. We aimed to develop a radiolabelled form of Oncrasin-1 to enable in-vivo imaging of mutant KRAS expression in malignant tumours. This work outlines the synthesis of 3 fluorinated derivatives and development of iodonium salt and boronic ester precursors for radiolabelling with the 18F isotope. RESULTS: In our hands, synthesis of iodonium salts were not easily accessible due to the 3-carbaldehyde indole structure being preferentially oxidized by conditions required for iodonium salt formation, rather than benzyl iodide. Synthesis and radiolabelling of boronic acid pinacol ester precursors were successful, with the products being obtained in yields of 10.76% ± 0.96% (n = 5), 14.7% ±8.58% (n = 3) and 14.92% ±3.9% (n = 3) for 18F KAM001, 18F KAM002 and 18F KAM003 respectively, with radiochemical purity of greater than 99%. CONCLUSIONS: The successful synthesis of these tracers has been undertaken utilizing boronic ester radio-fluorination methods and will allow for investigation of Oncrasin based molecules as potential diagnostics for cancers expressing mutant KRAS protein.
  • Item
    Thumbnail Image
    Synthesis and validation of [18F]mBPET-1, a fluorine-18 labelled mTOR inhibitor derivative based on a benzofuran backbone
    Wichmann, CW ; Goh, YW ; Parslow, AC ; Rigopoulos, A ; Guo, N ; Scott, AM ; Ackermann, U ; White, JM (SPRINGERNATURE, 2020-01-23)
    BACKGROUND: Targeted therapy of HER2 positive breast cancer has led to clinical success in some cases with primary and secondary resistance being major obstacles. Due to the substantial involvement of mTOR kinase in cell growth and proliferation pathways it is now targeted in combination treatments to counteract HER2 targeted therapy resistance. However, the selection of receptive patient populations for a specific drug combination is crucial. This work aims to develop a molecular probe capable of identifying patients with tumour populations which are receptive to RAD001 combination therapy. Based on the structure of a mTOR inhibitor specific for mTORC1, we designed, synthesised and characterised a novel benzofuran based molecular probe which suits late stage fluorination via Click chemistry. RESULTS: Synthesis of the alkyne precursor 5 proceeded in 27.5% yield over 7 linear steps. Click derivatisation gave the non-radioactive standard in 25% yield. Radiosynthesis of [18F]1-((1-(2-Fluoroethyl)-1H-1,2,3-triazol-4-yl) methyl)-4-((5-methoxy-2-phenylbenzofuran-4-yl) methyl) piperazine ([18F]mBPET-1) proceeded over two steps which were automated on an iPhase FlexLab synthesis module. In the first step, 2-[18F]fluoroethylazide ([18F]6) was produced, purified by automated distillation in 60% non-decay-corrected yield and subjected to Click conditions with 5. Semi-preparative RP-HPLC purification and reformulation gave [18F]mBPET-1 in 40% ± 5% (n = 6) overall RCY with a process time of 90 min. Radiochemical purity was ≥99% at end of synthesis (EOS) and ≥ 98% after 4 h at room temperature. Molar activities ranged from typically 24.8 GBq/μmol (EOS) to a maximum of 78.6 GBq/μmol (EOS). Lipophilicity of [18F]mBPET-1 was determined at pH 7.4 (logD7.4 = 0.89). [18F]mBPET-1 showed high metabolic stability when incubated with mouse S9 liver fractions which resulted in a 0.8% drop in radiochemical purity after 3 h. Cell uptake assays showed 1.3-1.9-fold increased uptake of the [18F]mBPET-1 in RAD001 sensitive compared to insensitive cells across a panel of 4 breast cancer cell lines. CONCLUSION: Molecular targeting of mTOR with [18F]mBPET-1 distinguishes mTOR inhibitor sensitive and insensitive cell lines. Future studies will explore the ability of [18F]mBPET-1 to predict response to mTOR inhibitor treatment in in vivo models.
  • Item
    Thumbnail Image
    A multifunctional surfactant catalyst inspired by hydrolases
    Nothling, MD ; Xiao, Z ; Hill, NS ; Blyth, MT ; Bhaskaran, A ; Sani, M-A ; Espinosa-Gomez, A ; Ngov, K ; White, J ; Buscher, T ; Separovic, F ; O'Mara, ML ; Coote, ML ; Connal, LA (American Association for the Advancement of Science, 2020-04-01)
    The remarkable power of enzymes to undertake catalysis frequently stems from their grouping of multiple, complementary chemical units within close proximity around the enzyme active site. Motivated by this, we report here a bioinspired surfactant catalyst that incorporates a variety of chemical functionalities common to hydrolytic enzymes. The textbook hydrolase active site, the catalytic triad, is modeled by positioning the three groups of the triad (-OH, -imidazole, and -CO2H) on a single, trifunctional surfactant molecule. To support this, we recreate the hydrogen bond donating arrangement of the oxyanion hole by imparting surfactant functionality to a guanidinium headgroup. Self-assembly of these amphiphiles in solution drives the collection of functional headgroups into close proximity around a hydrophobic nano-environment, affording hydrolysis of a model ester at rates that challenge α-chymotrypsin. Structural assessment via NMR and XRD, paired with MD simulation and QM calculation, reveals marked similarities of the co-micelle catalyst to native enzymes.