School of Chemistry - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 12
  • Item
    Thumbnail Image
    A Comparison of the Effectiveness of Sonication, High Shear Mixing and Homogenisation on Improving the Heat Stability of Whey Protein Solutions
    Koh, LLA ; Chandrapala, J ; Zisu, B ; Martin, GJO ; Kentish, SE ; Ashokkumar, M (SPRINGER, 2014-02)
  • Item
    Thumbnail Image
    Electrochemical investigation of the interaction between lysozyme-shelled microbubbles and vitamin C
    Cavalieri, F ; Micheli, L ; Zhou, M ; Tortora, M ; Palleschi, G ; Ashokkumar, M (SPRINGER HEIDELBERG, 2013-06)
    We report loading of vitamin C (ascorbic acid) on to lysozyme-shelled microbubbles. The interaction between lysozyme-shelled microbubbles and vitamin C was studied by use of cyclic and differential pulse voltammetry, zeta potential measurements, and scanning electron microscopy. The effect of microbubbles on electrochemical measurement of ascorbic acid was evaluated. The linear range for ascorbic acid obtained for differential pulse measurement in the presence of 1 mg mL(-1) microbubbles was 1-50 μmol L(-1) (y = 0.067x + 0.130, r(2) = 0.995), with a detection limit of 0.5 μmol L(-1). The experimental conditions, i.e., pH and ionic strength, were optimized to improve the interaction between ascorbic acid and lysozyme-shelled microbubbles. The results were satisfactory when the interaction was performed for 1 h in aqueous solution at pH 6. The amount of vitamin C loaded on the microbubbles (90% of the analyte added, RSD(inter-expt.) = 3%, n = 6) and the stability of microbubbles-ascorbic acid complex (until 72 h at 25 °C) were also evaluated by use of differential pulse voltammetry and zeta potential measurements.
  • Item
    Thumbnail Image
    Novel molecularly imprinted polymeric microspheres for preconcentration and preservation of polycyclic aromatic hydrocarbons from environmental samples
    Krupadam, RJ ; Korde, BA ; Ashokkumar, M ; Kolev, SD (SPRINGER HEIDELBERG, 2014-09)
    Molecularly imprinted polymer (MIP) microspheres with diameters in the range 60-500 μm were synthesized in a continuous segmented flow microfluidic reactor and used as packing material for microtraps for the selective separation of benzo[a]pyrene (BAP) from environmental aqueous samples. The synthesis involved the pumping of monodisperse droplets of acetonitrile containing methacrylic acid as the functional monomer, BAP as a template, and ethylene glycol dimethacrylate as the cross-linking monomer into the microchannels of the microfluidic reactor. The microspheres showed high adsorption capacity and selectivity for BAP in aqueous solutions; both are important for the environmental monitoring and analysis of BAP. The adsorption capacity for BAP of the smallest MIP microspheres (size range 60-80 μm), prepared as part of this study, was 75 mg g(-1) in aqueous solutions; furthermore, this adsorption capacity was close to 300 % higher than that of commercially used activated carbon. Microtraps packed with MIP retained BAP intact for at least 30 days, whereas microtraps packed with activated carbon for BAP showed 40 % reduction in BAP concentration for the same period. This study has demonstrated that MIP microtraps have significant potential for the selective enrichment and preservation of targeted polycyclic aromatic hydrocarbons from complex environmental samples.
  • Item
    Thumbnail Image
    Molecular properties of lysozyme-microbubbles: towards the protein and nucleic acid delivery
    Melino, S ; Zhou, M ; Tortora, M ; Paci, M ; Cavalieri, F ; Ashokkumar, M (SPRINGER WIEN, 2012-08)
    Microbubbles (MBs) have specific acoustic properties that make them useful as contrast agents in ultrasound imaging. The use of the MBs in clinical practice led to the development of more sensitive imaging techniques both in cardiology and radiology. Protein-MBs are typically obtained by dispersing a gas phase in the protein solution and the protein deposited/cross-linked on the gas-liquid interface stabilizes the gas core. Innovative applications of protein-MBs prompt the investigation on the properties of MBs obtained using different proteins that are able to confer them specific properties and functionality. Recently, we have synthesized stable air-filled lysozyme-MBs (LysMBs) using high-intensity ultrasound-induced emulsification of a partly reduced lysozyme in aqueous solutions. The stability of LysMBs suspension allows for post-synthetic modification of MBs surface. In the present work, the protein folded state and the biodegradability property of LysMBs were investigated by limited proteolysis. Moreover, LysMBs were coated and functionalized with a number of biomacromolecules (proteins, polysaccharides, nucleic acids). Remarkably, LysMBs show a high DNA-binding ability and protective effects of the nucleic acids from nucleases and, further, the ability to transform the bacteria cells. These results highlight on the possibility of using LysMBs for delivery of proteins and nucleic acids in prophylactic and therapeutic applications.
  • Item
    Thumbnail Image
    THE FUNDAMENTALS OF POWER ULTRASOUND - A REVIEW
    Leong, T ; Ashokkumar, M ; Kentish, S (SPRINGER SINGAPORE PTE LTD, 2011-08)
  • Item
    Thumbnail Image
    Mechanical Characterization of Ultrasonically Synthesized Microbubble Shells by Flow Cytometry and AFM
    Cavalieri, F ; Best, JP ; Perez, C ; Tu, J ; Caruso, F ; Matula, TJ ; Ashokkumar, M (AMER CHEMICAL SOC, 2013-11-13)
    The mechanical properties of the shell of ultrasonically synthesized lysozyme microbubbles, LSMBs, were evaluated by acoustic interrogation and nanoindentation techniques. The Young's modulus of LSMBs was found to be 1.0 ± 0.3 MPa and 0.6 ± 0.1 MPa when analyzed by flow cytometry and AFM, respectively. The shell elasticity and Young's modulus were not affected by the size of the microbubbles (MBs). The hydrogel-like protein shell of LSMBs offers a softer, more elastic and viscous interface compared to lipid-shelled MBs. We show that the acoustic interrogation technique is a real-time, fast, and high-throughput method to characterize the mechanical characteristics of air-filled microbubbles coated by a variety of materials.
  • Item
    Thumbnail Image
    Experimental and Theoretical Studies on the Movements of Two Bubbles in an Acoustic Standing Wave Field
    Jiao, J ; He, Y ; Leong, T ; Kentish, SE ; Ashokkumar, M ; Manasseh, R ; Lee, J (AMER CHEMICAL SOC, 2013-10-17)
    When subjected to an ultrasonic standing-wave field, cavitation bubbles smaller than the resonance size migrate to the pressure antinodes. As bubbles approach the antinode, they also move toward each other and either form a cluster or coalesce. In this study, the translational trajectory of two bubbles moving toward each other in an ultrasonic standing wave at 22.4 kHz was observed using an imaging system with a high-speed video camera. This allowed the speed of the approaching bubbles to be measured for much closer distances than those reported in the prior literature. The trajectory of two approaching bubbles was modeled using coupled equations of radial and translational motions, showing similar trends with the experimental results. We also indirectly measured the secondary Bjerknes force by monitoring the acceleration when bubbles are close to each other under different acoustic pressure amplitudes. Bubbles begin to accelerate toward each other as the distance between them gets shorter, and this acceleration increases with increasing acoustic pressure. The current study provides experimental data that validates the theory on the movement of bubbles and forces acting between them in an acoustic field that will be useful in understanding bubble coalescence in an acoustic field.
  • Item
    Thumbnail Image
    Influence of acoustic pressure and bubble sizes on the coalescence of two contacting bubbles in an acoustic field
    Jiao, J ; He, Y ; Yasui, K ; Kentish, SE ; Ashokkumar, M ; Manasseh, R ; Lee, JY (Elsevier, 2015)
    In this study, the coalescence time between two contacting sub-resonance size bubbles was measured experimentally under an acoustic pressure ranging from 10kPa to 120kPa, driven at a frequency of 22.4kHz. The coalescence time obtained under sonication was much longer compared to that calculated by the film drainage theory for a free bubble surface without surfactants. It was found that under the influence of an acoustic field, the coalescence time could be probabilistic in nature, exhibiting upper and lower limits of coalescence times which are prolonged when both the maximum surface approach velocity and secondary Bjerknes force increases. The size of the two contacting bubbles is also important. For a given acoustic pressure, bubbles having a larger average size and size difference were observed to exhibit longer coalescence times. This could be caused by the phase difference between the volume oscillations of the two bubbles, which in turn affects the minimum film thickness reached between the bubbles and the film drainage time. These results will have important implications for developing film drainage theory to account for the effect of bubble translational and volumetric oscillations, bubble surface fluctuations and microstreaming.
  • Item
    Thumbnail Image
    Experimental and theoretical analysis of secondary Bjerknes forces between two bubbles in a standing wave
    Jiao, J ; He, Y ; Kentish, SE ; Ashokkumar, M ; Manasseh, R ; Lee, J (ELSEVIER, 2015-04)
    Bubbles in an acoustic field are affected by forces such as primary and secondary Bjerknes forces, which have been shown to be influenced by acoustic pressure, frequency, bubble size and separation distance between bubbles. However, such studies are predominantly theoretical, and are mostly focused on the sign reversal of the secondary Bjerknes force. This study provides experimental data on the effect of a range of bubble sizes (8-30 μm), distances (⩽0.2 mm), acoustic pressures (20-40 kPa) and frequencies (40-100 kHz) on the relative acceleration of two approaching bubbles. Under these conditions, only variations in the magnitude of the attractive force were observed. Using coupled equations of radial and translational motions, the acceleration and secondary Bjerknes force were calculated and compared to the experimental data. The variations in the magnitude of the secondary Bjerknes forces were explained by simulating bubble radius and coupled volume oscillation as a function of time.
  • Item
    Thumbnail Image
    The use of ultrasonic feed pre-treatment to reduce membrane fouling in whey ultrafiltration
    Koh, LLA ; Hanh, THN ; Chandrapala, J ; Zisu, B ; Ashokkumar, M ; Kentish, SE (ELSEVIER SCIENCE BV, 2014-03-01)