School of Chemistry - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 13
  • Item
    Thumbnail Image
    Sono-Fenton Chemistry Converts Phenol and Phenyl Derivatives into Polyphenols for Engineering Surface Coatings
    Mei, H ; Gao, Z ; Zhao, K ; Li, M ; Ashokkumar, M ; Song, A ; Cui, J ; Caruso, F ; Hao, J (WILEY-V C H VERLAG GMBH, 2021-09-20)
    We report a sono-Fenton strategy to mediate the supramolecular assembly of metal-phenolic networks (MPNs) as substrate-independent coatings using phenol and phenyl derivatives as building blocks. The assembly process is initiated from the generation of hydroxyl radicals (. OH) using high-frequency ultrasound (412 kHz), while the metal ions synergistically participate in the production of additional . OH for hydroxylation/phenolation of phenol and phenyl derivatives via the Fenton reaction and also coordinate with the phenolic compounds for film formation. The coating strategy is applicable to various phenol and phenyl derivatives and different metal ions including FeII , FeIII , CuII , and CoII . In addition, the sono-Fenton strategy allows real-time control over the assembly process by turning the high-frequency ultrasound on or off. The properties of the building blocks are maintained in the formed films. This work provides an environmentally friendly and controllable method to expand the application of phenolic coatings for surface engineering.
  • Item
    Thumbnail Image
    Modulating Targeting of Poly(ethylene glycol) Particles to Tumor Cells Using Bispecific Antibodies
    Cui, J ; Ju, Y ; Houston, ZH ; Class, JJ ; Fletcher, NL ; Alcantara, S ; Dai, Q ; Howard, CB ; Mahler, SM ; Wheatley, AK ; De Rose, R ; Brannon, PT ; Paterson, BM ; Donnelly, PS ; Thurecht, K ; Caruso, F ; Kent, SJ (WILEY, 2019-05)
    Low-fouling or "stealth" particles composed of poly(ethylene glycol) (PEG) display a striking ability to evade phagocytic cell uptake. However, functionalizing them for specific targeting is challenging. To address this challenge, stealth PEG particles prepared by a mesoporous silica templating method are functionalized with bispecific antibodies (BsAbs) to obtain PEG-BsAb particles via a one-step binding strategy for cell and tumor targeting. The dual specificity of the BsAbs-one arm binds to the PEG particles while the other targets a cell antigen (epidermal growth factor receptor, EGFR)-is exploited to modulate the number of targeting ligands per particle. Increasing the BsAb incubation concentration increases the amount of BsAb tethered to the PEG particles and enhances targeting and internalization into breast cancer cells overexpressing EGFR. The degree of BsAb functionalization does not significantly reduce the stealth properties of the PEG particles ex vivo, as assessed by their interactions with primary human blood granulocytes and monocytes. Although increasing the BsAb amount on PEG particles does not lead to the expected improvement in tumor accumulation in vivo, BsAb functionalization facilitates tumor cell uptake of PEG particles. This work highlights strategies to balance evading nonspecific clearance pathways, while improving tumor targeting and accumulation.
  • Item
    Thumbnail Image
    One-Step Assembly of Coordination Complexes for Versatile Film and Particle Engineering
    Ejima, H ; Richardson, JJ ; Liang, K ; Best, JP ; van Koeverden, MP ; Such, GK ; Cui, J ; Caruso, F (AMER ASSOC ADVANCEMENT SCIENCE, 2013-07-12)
    The development of facile and versatile strategies for thin-film and particle engineering is of immense scientific interest. However, few methods can conformally coat substrates of different composition, size, shape, and structure. We report the one-step coating of various interfaces using coordination complexes of natural polyphenols and Fe(III) ions. Film formation is initiated by the adsorption of the polyphenol and directed by pH-dependent, multivalent coordination bonding. Aqueous deposition is performed on a range of planar as well as inorganic, organic, and biological particle templates, demonstrating an extremely rapid technique for producing structurally diverse, thin films and capsules that can disassemble. The ease, low cost, and scalability of the assembly process, combined with pH responsiveness and negligible cytotoxicity, makes these films potential candidates for biomedical and environmental applications.
  • Item
    No Preview Available
    Immobilization and Intracellular Delivery of an Anticancer Drug Using Mussel-Inspired Polydopamine Capsules
    Cui, J ; Yan, Y ; Such, GK ; Liang, K ; Ochs, CJ ; Postma, A ; Caruso, F (AMER CHEMICAL SOC, 2012-08)
    We report a facile approach to immobilize pH-cleavable polymer-drug conjugates in mussel-inspired polydopamine (PDA) capsules for intracellular drug delivery. Our design takes advantage of the facile PDA coating to form capsules, the chemical reactivity of PDA films, and the acid-labile groups in polymer side chains for sustained pH-induced drug release. The anticancer drug doxorubicin (Dox) was conjugated to thiolated poly(methacrylic acid) (PMA(SH)) with a pH-cleavable hydrazone bond, and then immobilized in PDA capsules via robust thiol-catechol reactions between the polymer-drug conjugate and capsule walls. The loaded Dox showed limited release at physiological pH but significant release (over 85%) at endosomal/lysosomal pH. Cell viability assays showed that Dox-loaded PDA capsules enhanced the efficacy of eradicating HeLa cancer cells compared with free drug under the same assay conditions. The reported method provides a new platform for the application of stimuli-responsive PDA capsules as drug delivery systems.
  • Item
    No Preview Available
    Dopamine-Mediated Continuous Assembly of Biodegradable Capsules
    Ochs, CJ ; Hong, T ; Such, GK ; Cui, J ; Postma, A ; Caruso, F (AMER CHEMICAL SOC, 2011-07-12)
  • Item
    Thumbnail Image
    Mechanically Tunable, Self-Adjuvanting Nanoengineered Polypeptide Particles
    Cui, J ; De Rose, R ; Best, JP ; Johnston, APR ; Alcantara, S ; Liang, K ; Such, GK ; Kent, SJ ; Caruso, F (WILEY-V C H VERLAG GMBH, 2013-07-05)
    DNA-loaded polypeptide particles are prepared via templated assembly of mesoporous silica for the delivery of adjuvants. The elasticity and cargo-loading capacity of the obtained particles can be tuned by the amount of cross-linker used to stabilize the polypeptide particles. The use of polypeptide particles as biocarriers provides a promising method for vaccine delivery.
  • Item
    Thumbnail Image
    Peptide-Tunable Drug Cytotoxicity via One-Step Assembled Polymer Nanoparticles
    Liang, K ; Richardson, JJ ; Ejima, H ; Such, GK ; Cui, J ; Caruso, F (WILEY-V C H VERLAG GMBH, 2014-04)
    A novel class of nanoparticles is developed for the co-delivery of a short cell penetrating peptide and a chemotherapeutic drug to achieve enhanced cytotoxicity. Tunable cytotoxicity is achieved through non-toxic peptide-facilitated gating. The strategy relies on a one-step blending process from polymer building blocks to form monodisperse, PEGylated particles that are sensitive to cellular pH variations. By varying the amount of peptide loading, the chemotherapeutic effects can be enhanced by up to 30-fold.
  • Item
    Thumbnail Image
    Endocytic pH-Triggered Degradation of Nanoengineered Multilayer Capsules
    Liang, K ; Such, GK ; Johnston, APR ; Zhu, Z ; Ejima, H ; Richardson, JJ ; Cui, J ; Caruso, F (WILEY-V C H VERLAG GMBH, 2014-03)
    The synthesis of cross-linker free layer-by-layer (LbL) capsules that solely utilize cellular pH variations as a trigger to specifically deconstruct and subsequently release cargo in cells is reported. These capsules demonstrate retention of water-soluble therapeutic molecules as small as 500 Da at extracellular pH. Triggered capsule degradation and release of cargo is observed within 30 min of cell uptake.
  • Item
    Thumbnail Image
    Endocytic Capsule Sensors for Probing Cellular Internalization
    Liang, K ; Gunawan, ST ; Richardson, JJ ; Such, GK ; Cui, J ; Caruso, F (WILEY, 2014-10)
    A new class of polymer capsules with an in-built endocytic pH-coupled fluorescence switch is reported. These capsules display reversible "on/off" fluorescence in response to cellular pH variations. Using this system, the high-throughput quantification between surface-bound and internalized capsules is demonstrated. This system allows a fundamental study of the interaction between nanoengineered materials and biological systems at a cellular level.
  • Item
    No Preview Available
    Surface Engineering of Polypropylene Membranes with Carbonic Anhydrase-Loaded Mesoporous Silica Nanoparticles for Improved Carbon Dioxide Hydration
    Yong, JKJ ; Cui, J ; Cho, KL ; Stevens, GW ; Caruso, F ; Kentish, SE (AMER CHEMICAL SOC, 2015-06-09)
    Carbonic anhydrase (CA) is a native enzyme that facilitates the hydration of carbon dioxide into bicarbonate ions. This study reports the fabrication of thin films of active CA enzyme onto a porous membrane substrate using layer-by-layer (LbL) assembly. Deposition of multilayer films consisting of polyelectrolytes and CA was monitored by quartz crystal microgravimetry, while the enzymatic activity was assayed according to the rates of p-nitrophenylacetate (p-NPA) hydrolysis and CO2 hydration. The fabrication of the films onto a nonporous glass substrate showed CO2 hydration rates of 0.52 ± 0.09 μmol cm(-2) min(-1) per layer of bovine CA and 2.6 ± 0.7 μmol cm(-2) min(-1) per layer of a thermostable microbial CA. The fabrication of a multilayer film containing the microbial CA on a porous polypropylene membrane increased the hydration rate to 5.3 ± 0.8 μmol cm(-2) min(-1) per layer of microbial CA. The addition of mesoporous silica nanoparticles as a film layer prior to enzyme adsorption was found to increase the activity on the polypropylene membranes even further to a rate of 19 ± 4 μmol cm(-2) min(-1) per layer of microbial CA. The LbL treatment of these membranes increased the mass transfer resistance of the membrane but decreased the likelihood of membrane pore wetting. These results have potential application in the absorption of carbon dioxide from combustion flue gases into aqueous solvents using gas-liquid membrane contactors.