School of Chemistry - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    Rhenium and technetium complexes of thioamide derivatives of pyridylhydrazine that bind to amyloid-β plaques
    Fletcher, SP ; Noor, A ; Hickey, JL ; McLean, CA ; White, JM ; Donnelly, PS (SPRINGER, 2018-10)
    Age-associated deposition of amyloid-β in cerebral blood vessels, a condition referred to as cerebral amyloid angiopathy, can contribute to stroke and dementia. This research aimed to design new radioactive technetium-99 m complexes that bind to amyloid-β plaques that have the potential to assist in diagnosis of cerebral amyloid angiopathy using single-photon-emitted computed tomography (SPECT) imaging. Six new pyridylthiosemicarbazide ligands containing either benzofuran or styrylpyridyl functional groups that are known to selectively bind to amyloid plaques were prepared. Non-radioactive isotopes of technetium are not available so rhenium was used as a surrogate for exploratory chemistry. The new ligands were used to prepare well-defined [Re-oxo]3+ complexes where two pyridylthiosemicarbazide ligands were coordinated to a single metal ion to give bivalent complexes with two amyloid-β targeting functional groups. The interaction of the [Re-oxo]3+ complexes with synthetic amyloid-β1-42 and with amyloid plaques in human brain tissue was investigated. Two ligands were selected to develop methods to prepare their [99mTc-oxo]3+ complexes at the tracer level. These technetium-99 m complexes are likely to be isostructural to their rhenium-oxo analogues.
  • Item
    Thumbnail Image
    Rhenium and technetium complexes that bind to amyloid-β plaques
    Hayne, DJ ; North, AJ ; Fodero-Tavoletti, M ; White, JM ; Hung, LW ; Rigopoulos, A ; McLean, CA ; Adlard, PA ; Ackermann, U ; Tochon-Danguy, H ; Villemagne, VL ; Barnham, KJ ; Donnelly, PS (ROYAL SOC CHEMISTRY, 2015)
    Alzheimer's disease is associated with the presence of insoluble protein deposits in the brain called amyloid plaques. The major constituent of these deposits is aggregated amyloid-β peptide. Technetium-99m complexes that bind to amyloid-β plaques could provide important diagnostic information on amyloid-β plaque burden using Single Photon Emission Computed Tomography (SPECT). Tridentate ligands with a stilbene functional group were used to form complexes with the fac-[M(I)(CO)3](+) (M = Re or (99m)Tc) core. The rhenium carbonyl complexes with tridentate co-ligands that included a stilbene functional group and a dimethylamino substituent bound to amyloid-β present in human frontal cortex brain tissue from subjects with Alzheimer's disease. This chemistry was extended to make the analogous [(99m)Tc(I)(CO)3](+) complexes and the complexes were sufficiently stable in human serum. Whilst the lipophilicity (log D7.4) of the technetium complexes appeared ideally suited for penetration of the blood-brain barrier, preliminary biodistribution studies in an AD mouse model (APP/PS1) revealed relatively low brain uptake (0.24% ID g(-1) at 2 min post injection).