School of Chemistry - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 41
  • Item
    Thumbnail Image
    Phase Transition Modulation and Defect Suppression in Perovskite Solar Cells Enabled by a Self-Sacrificed Template
    Xiong, Z ; Chen, S ; Zhao, P ; Cho, Y ; Odunmbaku, GO ; Zheng, Y ; Jones, DJ ; Yang, C ; Sun, K (WILEY-V C H VERLAG GMBH, 2021-09)
    Tunable crystal growth offering highly aligned perovskite crystallites with suppressed deep‐level defects is vital for efficient charge transport, which in turn significantly influences the power conversion efficiency (PCE) of perovskite solar cells (PSCs). Herein, a “precursor to perovskite‐like template to perovskite” (PPP) growth strategy is developed, using either MAAc or GuaCl precursor to induce a sacrificial thermal–unstable perovskite‐like template for (FAPbI3)x(MAPbI3)y perovskite growth. The self‐sacrificed intermediate template induces the formation of highly aligned perovskite crystals with greatly enhanced film crystallinity and suppresses deep‐level defect formation. Furthermore, it is proved that MAAc or GuaCl completely evaporates during the high‐temperature annealing process. The reduction in defect densities and nonradiative recombination enhances both carrier lifetime and charge dynamics, yielding impressive PCEs of 22.3% and 22.8% with a high open‐circuit voltage (VOC) of 1.16 V and an incredible fill factor (FF) of 81.5% and 79.4% for MAAc‐ and GuaCl‐based devices, respectively. These results suggest that the formation of the thermal–unstable perovskite‐like sacrificial template is a promising strategy to restrain the deep‐level defects in perovskite films toward the attainment of highly efficient and stable large‐scale PSCs as well as other perovskite‐based electronics.
  • Item
    No Preview Available
    Alkyl Chain Length-Dependent Amine-Induced Crystallization for Efficient Interface Passivation of Perovskite Solar Cells
    Zhao, P ; Subbiah, J ; Zhang, B ; Hutchison, JA ; Ahluwalia, G ; Mitchell, V ; Ghiggino, KP ; Jones, DJ (WILEY, 2023-07)
    Abstract Efficient surface passivation of perovskite solar cells (PSC) using treatment with ammonium salts is demonstrated as an efficient method to enhance the device performance, owing to the affinity between the amine group and [PbI6]4− octahedron. However, due to their high solubility in polar solvents (DMF/DMSO), ammonium salts are more difficult to use in passivation of the interface between the electron transport layer and perovskite thin film in n‐i‐p structured PSCs. In this report, this work successfully links the amine group with a fullerene through a series of increasing carbon chain length, from two to twelve methylene units (FC‐X, X = 2, 6, 12), and then introduce the synthesized molecules as interface passivation layers into SnO2‐based planar n‐i‐p PSCs. Results show that the interface passivation effect is highly dependent on the side‐chain length, and the longer chain length amine‐functionalized fullerene is more beneficial for the device performance. A power conversion efficiency as high as 21.2% is achieved by using FC‐12. The surface energy, perovskite crystallite size and electron transfer capacity correlate with the linker chain length. This work develops an amine‐induced anchored crystallization of perovskite to unravel the mechanism of this passivation effect. As expected, enhanced device stability is also observed in the FC‐12 passivated PSCs.
  • Item
    Thumbnail Image
    Additive-Morphology Interplay and Loss Channels in "All-Small-Molecule" Bulk-heterojunction (BHJ) Solar Cells with the Nonfullerene Acceptor IDTTBM
    Liang, R-Z ; Babics, M ; Seitkhan, A ; Wang, K ; Geraghty, PB ; Lopatin, S ; Cruciani, F ; Firdaus, Y ; Caporuscio, M ; Jones, DJ ; Beaujuge, PM (WILEY-V C H VERLAG GMBH, 2018-02-14)
    Abstract Achieving efficient bulk‐heterojunction (BHJ) solar cells from blends of solution‐processable small‐molecule (SM) donors and acceptors is proved particularly challenging due to the complexity in obtaining a favorable donor–acceptor morphology. In this report, the BHJ device performance pattern of a set of analogous, well‐defined SM donors—DR3TBDTT (DR3), SMPV1, and BTR—used in conjunction with the SM acceptor IDTTBM is examined. Examinations show that the nonfullerene “All‐SM” BHJ solar cells made with DR3 and IDTTBM can achieve power conversion efficiencies (PCEs) of up to ≈4.5% (avg. 4.0%) when the solution‐processing additive 1,8‐diiodooctane (DIO, 0.8% v/v) is used in the blend solutions. The figures of merit of optimized DR3:IDTTBM solar cells contrast with those of “as‐cast” BHJ devices from which only modest PCEs <1% can be achieved. Combining electron energy loss spectrum analyses in scanning transmission electron microscopy mode, carrier transport measurements via “metal‐insulator‐semiconductor carrier extraction” methods, and systematic recombination examinations by light‐dependence and transient photocurrent analyses, it is shown that DIO plays a determining role—establishing a favorable lengthscale for the phase‐separated SM donor–acceptor network and, in turn, improving the balance in hole/electron mobilities and the carrier collection efficiencies overall.
  • Item
    Thumbnail Image
    Reduced Recombination in High Efficiency Molecular Nematic Liquid Crystalline: Fullerene Solar Cells
    Armin, A ; Subbiah, J ; Stolterfoht, M ; Shoaee, S ; Xiao, Z ; Lu, S ; Jones, DJ ; Meredith, P (WILEY-V C H VERLAG GMBH, 2016-11-23)
    Bimolecular recombination in bulk heterojunction organic solar cells is the process by which nongeminate photogenerated free carriers encounter each other, and combine to form a charge transfer (CT) state which subsequently relaxes to the ground state. It is governed by the diffusion of the slower and faster carriers toward the electron donor–acceptor interface. In an increasing number of systems, the recombination rate constant is measured to be lower than that predicted by Langevin's model for relative Brownian motion and the capture of opposite charges. This study investigates the dynamics of charge generation, transport, and recombination in a nematic liquid crystalline donor:fullerene acceptor system that gives solar cells with initial power conversion efficiencies of >9.5%. Unusually, and advantageously from a manufacturing perspective, these efficiencies are maintained in junctions thicker than 300 nm. Despite finding imbalanced and moderate carrier mobilities in this blend, strongly suppressed bimolecular recombination is observed, which is ≈150 times less than predicted by Langevin theory, or indeed, more recent and advanced models that take into account the domain size and the spatial separation of electrons and holes. The suppressed bimolecular recombination arises from the fact that ground‐state decay of the CT state is significantly slower than dissociation.
  • Item
    Thumbnail Image
    Liquid Crystallinity as a Self-Assembly Motif for High-Efficiency, Solution-Processed, Solid-State Singlet Fission Materials
    Masoomi-Godarzi, S ; Liu, M ; Tachibana, Y ; Mitchell, VD ; Goerigk, L ; Ghiggino, KP ; Smith, TA ; Jones, DJ (WILEY-V C H VERLAG GMBH, 2019-08)
    Abstract Solution and solution‐deposited thin films of the discotic liquid crystalline electron acceptor–donor–acceptor (A‐D‐A) p‐type organic semiconductor FHBC(TDPP)2, synthesized by coupling thienyl substituted diketopyrrolopyrrole (TDPP) onto a fluorenyl substituted hexa‐peri‐hexabenzocoronene (FHBC) core, are examined by ultrafast and nanosecond transient absorption spectroscopy, and time‐resolved photoluminescence studies to examine their ability to support singlet fission (SF). Grazing incidence wide‐angle X‐ray (GIWAX) studies indicate that as‐cast thin films of FHBC(TDPP)2 are “amorphous,” while hexagonal packed discotic liquid crystalline films evolve during thermal annealing. SF in as‐cast thin films is observed with an ≈150% triplet generation yield. Thermally annealing the thin films improves SF yields up to 170%. The as‐cast thin films show no long‐range order, indicating a new class of SF material where the requirement for local order and strong near neighbor coupling has been removed. Generation of long‐lived triplets (µs) suggests that these materials may also be suitable for inclusion in organic solar cells to enhance performance.
  • Item
    Thumbnail Image
    Pyridine End-Capped Polymer to Stabilize Organic Nanoparticle Dispersions for Solar Cell Fabrication through Reversible Pyridinium Salt Formation
    Saxena, S ; Marlow, P ; Subbiah, J ; Colsmann, A ; Wong, WWH ; Jones, DJ (AMER CHEMICAL SOC, 2021-08-04)
    Bulk-heterojunction nanoparticle dispersions in water or alcohol can be employed as eco-friendly inks for the fabrication of organic solar cells by printing or coating. However, one major drawback is the need for stabilizing surfactants, which facilitate nanoparticle formation but later hamper device performance. When surfactant-free dispersions are formulated, a strong limitation is imposed by the dispersion concentration due to the tendency of nanoparticles to aggregate. In this work, pyridine end-capped poly(3-hexylthiophene) (P3HT-Py) is synthesized and included as an additive for the stabilization of P3HT:indene-C60 bis-adduct (ICBA) nanoparticle dispersions. In the presence of acetic acid (AcOH), a surface-active pyridinium acetate end-capped P3HT ion pair, P3HT-PyH+AcO-, is formed which effectively stabilizes the dispersion and hence allows the formation of dispersions with smaller nanoparticle sizes and higher concentrations of up to 30 mg/mL in methanol. The dispersions exhibit an enhanced shelf-lifetime of at least 60 days at room temperature. After the deposition of light-harvesting layers from the nanoparticle dispersions, the ion-pair formation is reversed at elevated temperatures leading to regeneration of P3HT-Py and AcOH. The AcOH evaporates from the active layer, while the performance of the corresponding solar cells is not affected by the residual P3HT-Py in the devices. Enhanced nanoparticle stability is achieved with only 0.017 wt % pyridine in the P3HT/ICBA formulation.
  • Item
    Thumbnail Image
    Solution-Processable, Solid State Donor-Acceptor Materials for Singlet Fission
    Masoomi-Godarzi, S ; Liu, M ; Tachibana, Y ; Goerigk, L ; Ghiggino, KP ; Smith, TA ; Jones, DJ (WILEY-V C H VERLAG GMBH, 2018-10-25)
    Abstract The exploitation of singlet fission (SF) materials in optoelectronic devices is restricted by the limited number of SF materials available and developing new organic materials that undergo singlet fission is a significant challenge. Using a new strategy based on conjugating strong donor and acceptor building blocks, the small molecule (BDT(DPP)2) and polymer (p‐BDT‐DPP) systems are designed and synthesized knowing that bisthiophene‐2,5‐dihydropyrrolo[3,4‐c]pyrrole‐1,4‐dione (DPP) has a low lying triplet energy level, which is further confirmed by time‐dependent density functional theory (TD‐DFT) calculations. TD‐DFT and natural transition orbital (NTO) analysis are conducted to gain insight into the photophysical properties and features of excited states in BDT(DPP)2, respectively. Femtosecond and nanosecond transient absorption spectroscopies are used to investigate the excited state kinetics in the synthesized compounds. Fast formation of triplet pairs in thin film of p‐BDT‐DPP and BDT(DPP)2 and the equilibrium formation of correlated triplet pairs and S1 from triplet–triplet annihilation in solution of BDT(DPP)2 are further evidence of SF in these compounds. The short triplet lifetime, as a result of fast biexcitonic recombination, provides additional support for triplet pair formation through singlet fission.
  • Item
    Thumbnail Image
    Theoretical Aspects of Iterative Coupling for Linear Oligomers and Polymers
    Neto, NS ; Jones, DJ ; Wong, WWH (WILEY-V C H VERLAG GMBH, 2020-03)
    Abstract A conceptual study of iterative coupling (IC) is performed, providing a unified description and new research directions. IC chain growth rates and functional group choice are analyzed, guiding construction of efficient schemes. The concept of cycle efficiency is defined as a more complete metric of experimental implementations of IC, and then applied to the main linear and exponential IC processes. The mathematical relations between individual reactions, cycles, and the iterative process as a whole are studied. Finally, macromolecule IC is proposed as a strikingly complementary process to standard IC, with potential to reduce the dispersity of non‐uniform samples. Due to its connection with the central limit theorem of statistics, it provides an unusually robust, powerful, and general method for scalable production of polymer samples with narrow distribution. In all, this contribution assists development of improved IC processes targeting low dispersity linear oligomers and polymers.
  • Item
    No Preview Available
    Reduced Recombination and Capacitor-like Charge Buildup in an Organic Heterojunction
    Schwarz, KN ; Geraghty, PB ; Mitchell, VD ; Khan, S-U-Z ; Sandberg, OJ ; Zarrabi, N ; Kudisch, B ; Subbiah, J ; Smith, TA ; Rand, BP ; Armin, A ; Scholes, GD ; Jones, DJ ; Ghiggino, KP (American Chemical Society, 2020-02-05)
    Organic photovoltaic (OPV) efficiencies continue to rise, raising their prospects for solar energy conversion. However, researchers have long considered how to suppress the loss of free carriers by recombination—poor diffusion and significant Coulombic attraction can cause electrons and holes to encounter each other at interfaces close to where they were photogenerated. Using femtosecond transient spectroscopies, we report the nanosecond grow-in of a large transient Stark effect, caused by nanoscale electric fields of ∼487 kV/cm between photogenerated free carriers in the device active layer. We find that particular morphologies of the active layer lead to an energetic cascade for charge carriers, suppressing pathways to recombination, which is ∼2000 times less than predicted by Langevin theory. This in turn leads to the buildup of electric charge in donor and acceptor domains—away from the interface—resistant to bimolecular recombination. Interestingly, this signal is only experimentally obvious in thick films due to the different scaling of electroabsorption and photoinduced absorption signals in transient absorption spectroscopy. Rather than inhibiting device performance, we show that devices up to 600 nm thick maintain efficiencies of >8% because domains can afford much higher carrier densities. These observations suggest that with particular nanoscale morphologies the bulk heterojunction can go beyond its established role in charge photogeneration and can act as a capacitor, where adjacent free charges are held away from the interface and can be protected from bimolecular recombination.
  • Item
    Thumbnail Image
    Controlled synthesis of poly(3-hexylthiophene) in continuous flow
    Seyler, H ; Subbiah, J ; Jones, DJ ; Holmes, AB ; Wong, WWH (BEILSTEIN-INSTITUT, 2013-07-25)
    There is an increasing demand for organic semiconducting materials with the emergence of organic electronic devices. In particular, large-area devices such as organic thin-film photovoltaics will require significant quantities of materials for device optimization, lifetime testing and commercialization. Sourcing large quantities of materials required for the optimization of large area devices is costly and often impossible to achieve. Continuous-flow synthesis enables straight-forward scale-up of materials compared to conventional batch reactions. In this study, poly(3-hexylthiophene), P3HT, was synthesized in a bench-top continuous-flow reactor. Precise control of the molecular weight was demonstrated for the first time in flow for conjugated polymers by accurate addition of catalyst to the monomer solution. The P3HT samples synthesized in flow showed comparable performance to commercial P3HT samples in bulk heterojunction solar cell devices.