School of Chemistry - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 1 of 1
  • Item
    Thumbnail Image
    Pyridine End-Capped Polymer to Stabilize Organic Nanoparticle Dispersions for Solar Cell Fabrication through Reversible Pyridinium Salt Formation
    Saxena, S ; Marlow, P ; Subbiah, J ; Colsmann, A ; Wong, WWH ; Jones, DJ (AMER CHEMICAL SOC, 2021-08-04)
    Bulk-heterojunction nanoparticle dispersions in water or alcohol can be employed as eco-friendly inks for the fabrication of organic solar cells by printing or coating. However, one major drawback is the need for stabilizing surfactants, which facilitate nanoparticle formation but later hamper device performance. When surfactant-free dispersions are formulated, a strong limitation is imposed by the dispersion concentration due to the tendency of nanoparticles to aggregate. In this work, pyridine end-capped poly(3-hexylthiophene) (P3HT-Py) is synthesized and included as an additive for the stabilization of P3HT:indene-C60 bis-adduct (ICBA) nanoparticle dispersions. In the presence of acetic acid (AcOH), a surface-active pyridinium acetate end-capped P3HT ion pair, P3HT-PyH+AcO-, is formed which effectively stabilizes the dispersion and hence allows the formation of dispersions with smaller nanoparticle sizes and higher concentrations of up to 30 mg/mL in methanol. The dispersions exhibit an enhanced shelf-lifetime of at least 60 days at room temperature. After the deposition of light-harvesting layers from the nanoparticle dispersions, the ion-pair formation is reversed at elevated temperatures leading to regeneration of P3HT-Py and AcOH. The AcOH evaporates from the active layer, while the performance of the corresponding solar cells is not affected by the residual P3HT-Py in the devices. Enhanced nanoparticle stability is achieved with only 0.017 wt % pyridine in the P3HT/ICBA formulation.