School of Chemistry - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 48
  • Item
    Thumbnail Image
    Tetraphenylethene 9,10-Diphenylanthracene Derivatives - Synthesis and Photophysical Properties
    Gao, C ; Seow, JY ; Zhang, B ; Hall, CR ; Tilley, AJ ; White, JM ; Smith, TA ; Wong, WWH (WILEY-V C H VERLAG GMBH, 2019-06-01)
    A series of tetraphenylethene 9,10-diphenylanthracene (TPE-DPA) derivatives have been synthesized, and their photophysical properties studied. Photoluminescence measurements in PMMA, neat films and nanoparticle dispersions reveal that different aggregation states are formed, which leads to different photophysical behavior. The triplet excited state properties were studied using Pt(II) octaethylporphyrin (PtOEP) as triplet sensitizer. Upconverted emission from the DPA moiety is observed in nanoparticle dispersions of each derivative. A higher upconverted emission intensity is observed in aerated (compared to deaerated) solutions of the derivatives following irradiation, which is attributed to oxidation of the TPE moiety. These results provide valuable insight for the design of AIE luminogens for triplet-triplet annihilation upconversion (TTA-UC).
  • Item
    Thumbnail Image
    A Maleimide-functionalized Tetraphenylethene for Measuring and Imaging Unfolded Proteins in Cells
    Zhang, S ; Liu, M ; Tan, LYF ; Hong, Q ; Pow, ZL ; Owyong, TC ; Ding, S ; Wong, WWH ; Hong, Y (WILEY-V C H VERLAG GMBH, 2019-03-15)
    Collapse of the protein homeostasis (proteostasis) can lead to accumulation and aggregation of unfolded proteins, which has been found to associate with a number of disease conditions including neurodegenerative diseases, diabetes and inflammation. Here we report a maleimide-functionalized tetraphenylethene (TPE)-derivatized fluorescent dye, TPE-NMI, which shows fluorescence turn-on property upon reacting with unfolded proteins in vitro and in live cells under proteostatic stress conditions. The level of unfolded proteins can be measured by flow cytometry and visualized with confocal microscopy.
  • Item
    Thumbnail Image
    Controlled synthesis of poly(3-hexylthiophene) in continuous flow
    Seyler, H ; Subbiah, J ; Jones, DJ ; Holmes, AB ; Wong, WWH (BEILSTEIN-INSTITUT, 2013-07-25)
    There is an increasing demand for organic semiconducting materials with the emergence of organic electronic devices. In particular, large-area devices such as organic thin-film photovoltaics will require significant quantities of materials for device optimization, lifetime testing and commercialization. Sourcing large quantities of materials required for the optimization of large area devices is costly and often impossible to achieve. Continuous-flow synthesis enables straight-forward scale-up of materials compared to conventional batch reactions. In this study, poly(3-hexylthiophene), P3HT, was synthesized in a bench-top continuous-flow reactor. Precise control of the molecular weight was demonstrated for the first time in flow for conjugated polymers by accurate addition of catalyst to the monomer solution. The P3HT samples synthesized in flow showed comparable performance to commercial P3HT samples in bulk heterojunction solar cell devices.
  • Item
    Thumbnail Image
    Bulk Heterojunction Nanomorphology of Fluorenyl Hexa-peri-hexabenzocoronene-Fullerene Blend Films
    Pfaff, M ; Mueller, P ; Bockstaller, P ; Mueller, E ; Subbiah, J ; Wong, WWH ; Klein, MFG ; Kiersnowski, A ; Puniredd, SR ; Pisula, W ; Colsmann, A ; Gerthsen, D ; Jones, DJ (AMER CHEMICAL SOC, 2013-11-27)
    In this study, the nanomorphology of fluorenyl hexa-peri-hexabenzocoronene:[6,6]-phenyl C61-butyric acid methyl ester (FHBC:PC61BM) absorber layers of organic solar cells was investigated. Different electron microscopical techniques, atomic force microscopy, and grazing incidence wide-angle X-ray scattering were applied for a comprehensive nanomorphology analysis. The development of the nanomorphology upon sample annealing and the associated change of the device performance were investigated. It was shown that the annealing process enhances the phase separation and therefore the bulk heterojunction structure. Due to π-π stacking, the FHBC molecules assemble into columnar stacks, which are already present before annealing. While the nonannealed sample consists of a mixture of homogeneously distributed PC61BM molecules and FHBC stacks with a preferential in-plane stack orientation, crystalline FHBC precipitates occur in the annealed samples. These crystals, which consist of hexagonal arranged FHBC stacks, grow with increased annealing time. They are distributed homogeneously over the whole volume of the absorber layer as revealed by electron tomography. The FHBC stacks, whether in the two phase mixture or in the pure crystalline precipitates, exhibit an edge-on orientation, according to results from grazing incidence wide-angle X-ray scattering (GIWAXS), dark-field transmission electron microscopy (DF TEM) imaging and selective area electron diffraction (SAED). The best solar cell efficiencies were obtained after 20 or 40 s sample annealing. These annealing times induce an optimized degree of phase separation between donor and acceptor material.
  • Item
    Thumbnail Image
    Photophysics and aggregation effects of a triphenylamine-based dye sensitizer on metal-oxide nanoparticles suspended in an ion trap
    Dryza, V ; Nguyen, JL ; Kwon, T-H ; Wong, WWH ; Holmes, AB ; Bieske, EJ (ROYAL SOC CHEMISTRY, 2013-01-01)
    The photophysical behaviour of a triphenylamine-based organic dye sensitizer (Carbz-PAHTDTT) attached to alumina and titania nanoparticles (labelled Carbz-Al and Carbz-Ti, respectively) is examined in the absence and presence of the chenodeoxycholic acid (CDCA) coadsorber. The experiments are conducted in vacuo by suspending the target dye-sensitized nanoparticles within a quadrupole ion trap, where they are probed with laser radiation to obtain emission spectra and time-resolved excited state decay curves. For Carbz-Al, the dye's emission band is blue-shifted and the excited state lifetime is increased upon the coabsorption of CDCA, effects attributed to reduced dye aggregation. Compared to Carbz-Al, the Carbz-Ti excited state lifetimes are significantly shorter due to excited dye molecules injecting electrons into the titania conduction band. For Carbz-Ti, the electron injection quantum yields for the surfaces with CDCA (CDCA : dye = 25 : 1) and without CDCA are estimated to be 0.87 and 0.71, respectively. The gas-phase results demonstrate that Carbz-PAHTDTT dye aggregates are detrimental to the performance of a dye-sensitized solar cell.
  • Item
    Thumbnail Image
    Benzotriazole-based donor-acceptor conjugated polymers with a broad absorption in the visible range
    Wong, WWH ; Subbiah, J ; Puniredd, SR ; Pisula, W ; Jones, DJ ; Holmes, AB (ROYAL SOC CHEMISTRY, 2014-02-21)
  • Item
    Thumbnail Image
    Thiazolyl substituted benzodithiophene copolymers: synthesis, properties and photovoltaic applications
    Xiao, Z ; Subbiah, J ; Sun, K ; Ji, S ; Jones, DJ ; Holmes, AB ; Wong, WWH (Royal Society of Chemistry, 2014)
    Three new conjugated polymers based on 5-decylthiazol-2-yl substituted benzodithiophene have been synthesized by Stille cross-coupling polymerization. 1,3-Dibromo-5-octylthieno[3,4-c]pyrrole-4,6-dione (M1), 2,5-diethylhexyl-3,6-bis(5-bromothiophen-2-yl)pyrrolo[3,4-c]-pyrrole-1,4-dione (M2) and 4,6-dibromo-thieno[3,4-b]thiophene-2-dodecyl carboxylate (M3) were used as acceptor building blocks for the synthesis of conjugated donor-acceptor polymers. The thermal, optical, electrochemical, and photovoltaic properties of the synthesized polymers were studied.
  • Item
    Thumbnail Image
    Single Isomer of Indene-C-70 Bisadduct-Isolation and Performance in Bulk Heterojunction Solar Cells
    Wong, WWH ; Subbiah, J ; White, JM ; Seyler, H ; Zhang, B ; Jones, DJ ; Holmes, AB (AMER CHEMICAL SOC, 2014-02-25)
  • Item
    Thumbnail Image
    Concentrating Aggregation-Induced Fluorescence in Planar Waveguides: A Proof-of-Principle
    Banal, JL ; White, JM ; Ghiggino, KP ; Wong, WWH (NATURE PUBLISHING GROUP, 2014-04-10)
    The photophysical properties of fluorescent dyes are key determinants in the performance of luminescent solar concentrators (LSCs). First-generation dyes--coumarin, perylenes, and rhodamines--used in LSCs suffer from both concentration quenching in the solid-state and small Stokes shifts which limit the current LSC efficiencies to below theoretical limits. Here we show that fluorophores that exhibit aggregation-induced emission (AIE) are promising materials for LSC applications. Experiments and Monte Carlo simulations show that the optical quantum efficiencies of LSCs with AIE fluorophores are at least comparable to those of LSCs with first-generation dyes as the active materials even without the use of any optical accessories to enhance the trapping efficiency of the LSCs. Our results demonstrate that AIE fluorophores can potentially solve some key limiting properties of first-generation LSC dyes.
  • Item
    Thumbnail Image
    Morphology Change and Improved Efficiency in Organic Photovoltaics via Hexa-peri-hexabenzocoronene Templates
    Dam, HH ; Sun, K ; Hanssen, E ; White, JM ; Marszalek, T ; Pisula, W ; Czolk, J ; Ludwig, J ; Colsmann, A ; Pfaff, M ; Gerthsen, D ; Wong, WWH ; Jones, DJ (AMER CHEMICAL SOC, 2014-06-11)
    The morphology of the active layer in organic photovoltaics (OPVs) is of crucial importance as it greatly influences charge generation and transport. A templating interlayer between the electrode and the active layer can change active layer morphology and influence the domain orientation. A series of amphiphilic interface modifiers (IMs) combining a hydrophilic polyethylene-glycol (PEG) oligomer and a hydrophobic hexabenzocoronene (HBC) were designed to be soluble in PEDOT:PSS solutions, and surface accumulate on drying. These IMs are able to self-assemble in solution. When IMs are deposited on top of a poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) film, they induce a morphology change of the active layer consisting of discotic fluorenyl-substituted HBC (FHBC) and [6,6]-phenyl C61-butyric acid methyl ester (PCBM). However, when only small amounts (0.2 wt %) of IMs are blended into PEDOT:PSS, a profound change of the active layer morphology is also observed. Morphology changes were monitored by grazing incidence wide-angle X-ray scattering (GIWAXS), transmission electron microscopy (TEM), TEM tomography, and low-energy high-angle angular dark-field scanning transmission electron microscopy (HAADF STEM). The interface modification resulted in a 20% enhancement of power conversion efficiency.