School of Chemistry - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 3 of 3
  • Item
    No Preview Available
  • Item
    Thumbnail Image
    3d-Metal derivatives of the [CuI(SO3)4]7- ion: structure and magnetism
    Abrahams, BF ; Abrahams, CT ; Haywood, MG ; Hudson, TA ; Moubaraki, B ; Murray, KS ; Robson, R (ROYAL SOC CHEMISTRY, 2012)
    The Cu(SO(3))(4)(7-) anion, which consists of a tetrahedrally coordinated Cu(I) centre coordinated to four sulfur atoms, is able to act as a multidentate ligand in discrete and infinite supramolecular species. The slow oxidation of an aqueous solution of Na(7)Cu(SO(3))(4) yields a mixed oxidation state, 2D network of composition Na(5){[Cu(II)(H(2)O)][Cu(I)(SO(3))(4)]}·6H(2)O. The addition of Cu(II) and 2,2'-bipyridine to an aqueous Na(7)Cu(SO(3))(4) solution leads to the formation of a pentanuclear complex of composition {[Cu(II)(H(2)O)(bipy)](4)[Cu(I)(SO(3))(4)]}(+); a combination of hydrogen bonding and π-π stacking interactions leads to the generation of infinite parallel channels that are occupied by disordered nitrate anions and water molecules. A pair of Cu(SO(3))(4)(7-) anions each act as a tridentate ligand towards a single Mn(II) centre when Mn(II) ions are combined with an excess of Cu(SO(3))(4)(7-). An anionic pentanuclear complex of composition {[Cu(I)(SO(3))(4)](2)[Fe(III)(H(2)O)](3)(O)} is formed when Fe(II) is added to a Cu(+)/SO(3)(2-) solution. Hydrated ferrous [Fe(H(2)O)(6)(2+)] and sodium ions act as counterions for the complexes and are responsible for the formation of an extensive hydrogen bond network within the crystal. Magnetic susceptibility studies over the temperature range 2-300 K show that weak ferromagnetic coupling occurs within the Cu(II) containing chains of Na(5){[Cu(II)(H(2)O)][Cu(I)(SO(3))(4)]}·6H(2)O, while zero coupling exists in the pentanuclear cluster {[Cu(II)(H(2)O)(bipy)](4)[Cu(I)(SO(3))(4)]}(NO(3))·H(2)O. Weak Mn(II)-O-S-O-Mn(II) antiferromagnetic coupling occurs in Na(H(2)O)(6){[Cu(I)(SO(3))(4)][Mn(II)(H(2)O)(2)](3)}, the latter formed when Mn was in excess during synthesis. The compound, Na(3)(H(2)O)(6)[Fe(II)(H(2)O)(6)](2){[Cu(I)(SO(3))(4)](2)[Fe(III)(H(2)O)](3)(O)}·H(2)O, contained trace magnetic impurities that affected the expected magnetic behaviour.
  • Item
    Thumbnail Image
    Gas phase ion chemistry of biomolecules. part 51 - Tuning the gas phase redox properties of copper(II) ternary complexes of terpyridines to control the formation of nucleobase radical cations
    Lam, AKY ; Abrahams, BF ; Grannas, MJ ; McFadyen, WD ; O'Hair, RAJ (ROYAL SOC CHEMISTRY, 2006)
    Electrospray ionization (ESI) tandem mass spectrometry (MS/MS) of ternary copper(II) complexes of [Cu(terpyX)(M)]2+ (where terpyX = is a substituted 2,2':6',2''-terpyridine ligand; M = the nucleobases: adenine, guanine, thymine and cytosine) was examined as a means of forming radical cations of nucleobases in the gas phase. The following substituents were examined: 4'-NMe2-2,2':6',6''-terpyridine; 4'-OH-2,2':6',6''-terpyridine; 4'-F-2,2':6',6''-terpyridine; 2,2':6',6''-terpyridine; 4'-Cl-2,2':6',6''-terpyridine; 4'-Br-2,2':6',6''-terpyridine; 4'-CO2H-2,2':6',6''-terpyridine; 4'-NO2-2,2':6',6''-terpyridine and 6,6''-dibromo-2',2:6',2''-terpyridine. Each of the ternary complexes [Cu(terpyX)(M)]2+ was mass selected and subjected to collision induced dissociation (CID) in a quadrupole ion trap. The types of fragmentation reactions observed for these complexes depend on the nature of the substituent on the terpyridine ligand, while the yields of the radical cations of the nucleobases follow the order of their ionization energies (IEs): G (lowest IE) > A > C > T (highest IE). In general, radical cation formation is favoured for electron withdrawing substituents (e.g. NO2) while loss of the neutral nucleobase is favoured for electron donating substituents (e.g. NMe2). Loss of the protonated nucleobase is a major fragmentation pathway for the OH substituted terpyridine system, consistent with its ability to bind to a metal centre as a deprotonated ligand. Crystal structure determinations of (6,6''-dibromo-2',2:6',2''-terpyridine)bis(nitrato)copper(II) and diaqua(4'-oxo-2,2':6',6''-terpyridine)copper(II) nitrate monohydrate were performed and correlated with the ESI results.