School of Chemistry - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 17
  • Item
    Thumbnail Image
    Structural effects of the antimicrobial peptide maculatin 1.1 on supported lipid bilayers
    Fernandez, DI ; Le Brun, AP ; Lee, T-H ; Bansal, P ; Aguilar, M-I ; James, M ; Separovic, F (SPRINGER, 2013-01)
    The interactions of the antimicrobial peptide maculatin 1.1 (GLFGVLAKVAAHVVPAIAEHF-NH(2)) with model phospholipid membranes were studied by use of dual polarisation interferometry and neutron reflectometry and dimyristoylphosphatidylcholine (DMPC) and mixed DMPC-dimyristoylphosphatidylglycerol (DMPG)-supported lipid bilayers chosen to mimic eukaryotic and prokaryotic membranes, respectively. In DMPC bilayers concentration-dependent binding and increasing perturbation of bilayer order by maculatin were observed. By contrast, in mixed DMPC-DMPG bilayers, maculatin interacted more strongly and in a concentration-dependent manner with retention of bilayer lipid order and structure, consistent with pore formation. These results emphasise the importance of membrane charge in mediating antimicrobial peptide activity and emphasise the importance of using complementary methods of analysis in probing the mode of action of antimicrobial peptides.
  • Item
    Thumbnail Image
    The lipid network.
    Sani, M-A ; Separovic, F ; Gehman, JD (Springer Science and Business Media LLC, 2012-12)
    Natural cell membranes are composed of a remarkable variety of lipids, which provide specific biophysical properties to support membrane protein function. An improved understanding of this complexity of membrane composition may also allow the design of membrane active drugs. Crafting a relevant model of a cell membrane with controlled composition is becoming an art, with the ability to reveal the molecular mechanisms of biological processes and lead to better treatment of pathologies. By matching physiological observations from in vivo experiments to high-resolution information, more easily obtained from in vitro studies, complex interactions at the lipid interface are determined. The role of the lipid network in biological membranes is, therefore, the subject of increasing attention.
  • Item
    Thumbnail Image
    Total chemical synthesis of a heterodimeric interchain bis-lactam-linked Peptide: application to an analogue of human insulin-like Peptide 3.
    Karas, J ; Shabanpoor, F ; Hossain, MA ; Gardiner, J ; Separovic, F ; Wade, JD ; Scanlon, DB (Hindawi Limited, 2013)
    Nonreducible cystine isosteres represent important peptide design elements in that they can maintain a near-native tertiary conformation of the peptide while simultaneously extending the in vitro and in vivo half-life of the biomolecule. Examples of these cystine mimics include dicarba, diselenide, thioether, triazole, and lactam bridges. Each has unique physicochemical properties that impact upon the resulting peptide conformation. Each also requires specific conditions for its formation via chemical peptide synthesis protocols. While the preparation of peptides containing two lactam bonds within a peptide is technically possible and reported by others, to date there has been no report of the chemical synthesis of a heterodimeric peptide linked by two lactam bonds. To examine the feasibility of such an assembly, judicious use of a complementary combination of amine and acid protecting groups together with nonfragment-based, total stepwise solid phase peptide synthesis led to the successful preparation of an analogue of the model peptide, insulin-like peptide 3 (INSL3), in which both of the interchain disulfide bonds were replaced with a lactam bond. An analogue containing a single disulfide-substituted interchain lactam bond was also prepared. Both INSL3 analogues retained significant cognate RXFP2 receptor binding affinity.
  • Item
    Thumbnail Image
    2-Nitroveratryl as a Photocleavable Thiol-Protecting Group for Directed Disulfide Bond Formation in the Chemical Synthesis of Insulin
    Karas, JA ; Scanlon, DB ; Forbes, BE ; Vetter, I ; Lewis, RJ ; Gardiner, J ; Separovic, F ; Wade, JD ; Hossain, MA (WILEY-V C H VERLAG GMBH, 2014-07-28)
    Chemical synthesis of peptides can allow the option of sequential formation of multiple cysteines through exploitation of judiciously chosen regioselective thiol-protecting groups. We report the use of 2-nitroveratryl (oNv) as a new orthogonal group that can be cleaved by photolysis under ambient conditions. In combination with complementary S-pyridinesulfenyl activation, disulfide bonds are formed rapidly in situ. The preparation of Fmoc-Cys(oNv)-OH is described together with its use for the solid-phase synthesis of complex cystine-rich peptides, such as insulin.
  • Item
    Thumbnail Image
    Melittin peptides exhibit different activity on different cells and model membranes
    Jamasbi, E ; Batinovic, S ; Sharples, RA ; Sani, M-A ; Robins-Browne, RM ; Wade, JD ; Separovic, F ; Hossain, MA (SPRINGER WIEN, 2014-12)
    Melittin (MLT) is a lytic peptide with a broad spectrum of activity against both eukaryotic and prokaryotic cells. To understand the role of proline and the thiol group of cysteine in the cytolytic activity of MLT, native MLT and cysteine-containing analogs were prepared using solid phase peptide synthesis. The antimicrobial and cytolytic activities of the monomeric and dimeric MLT peptides against different cells and model membranes were investigated. The results indicated that the proline residue was necessary for antimicrobial activity and cytotoxicity and its absence significantly reduced lysis of model membranes and hemolysis. Although lytic activity against model membranes decreased for the MLT dimer, hemolytic activity was increased. The native peptide and the MLT-P14C monomer were mainly unstructured in buffer while the dimer adopted a helical conformation. In the presence of neutral and negatively charged vesicles, the helical content of the three peptides was significantly increased. The lytic activity, therefore, is not correlated to the secondary structure of the peptides and, more particularly, on the propensity to adopt helical conformation.
  • Item
    Thumbnail Image
    The Importance of Tryptophan B28 in H2 Relaxin for RXFP2 Binding and Activation
    Chan, LJ ; Wade, JD ; Separovic, F ; Bathgate, RAD ; Hossain, MA (SPRINGER, 2013-03)
  • Item
    Thumbnail Image
    Human relaxin-2: historical perspectives and role in cancer biology
    Nair, VB ; Samuel, CS ; Separovic, F ; Hossain, MA ; Wade, JD (SPRINGER WIEN, 2012-09)
    One of the most recognised and studied family of peptide hormones is the insulin superfamily. Within this family is the relaxin subfamily which comprises seven members: relaxin-1, -2 and -3 and insulin-like peptides 3, 4, 5 and 6. Besides exhibiting sequence similarities, each member exists as an active A-B heterodimer linked by three disulfide bonds. This mini-review is divided into three broad themes: an overview of all insulin superfamily members (including structural similarities); roles of each superfamily member and finally, a focus on the pleiotropic peptide hormone, human relaxin-2. In addition to promoting vasodilatory effects leading to evaluation in Phase III clinical trials for the treatment of acute heart failure, relaxin has recently been shown to be highly expressed by cancer cells, aiding in their proliferation, invasiveness and metastasis. These contrary effects of relaxin are discussed together with current efforts in the development of relaxin antagonists that may possess future therapeutic potential for the treatment of certain cancers.
  • Item
    Thumbnail Image
    Proline-rich antimicrobial peptides: potential therapeutics against antibiotic-resistant bacteria
    Li, W ; Tailhades, J ; O'Brien-Simpson, NM ; Separovic, F ; Otvos, L ; Hossain, MA ; Wade, JD (SPRINGER WIEN, 2014-10)
    The increasing resistance of pathogens to antibiotics causes a huge clinical burden that places great demands on academic researchers and the pharmaceutical industry for resolution. Antimicrobial peptides, part of native host defense, have emerged as novel potential antibiotic alternatives. Among the different classes of antimicrobial peptides, proline-rich antimicrobial peptides, predominantly sourced from insects, have been extensively investigated to study their specific modes of action. In this review, we focus on recent developments in these peptides. They show a variety of modes of actions, including mechanism shift at high concentration, non-lytic mechanisms, as well as possessing different intracellular targets and lipopolysaccharide binding activity. Furthermore, proline-rich antimicrobial peptides display the ability to not only modulate the immune system via cytokine activity or angiogenesis but also possess properties of penetrating cell membranes and crossing the blood brain barrier suggesting a role as potential novel carriers. Ongoing studies of these peptides will likely lead to the development of more potent antimicrobial peptides that may serve as important additions to the armoury of agents against bacterial infection and drug delivery.
  • Item
    Thumbnail Image
    Measuring translational diffusion coefficients of peptides and proteins by PFG-NMR using band-selective RF pulses
    Yao, S ; Weber, DK ; Separovic, F ; Keizer, DW (SPRINGER, 2014-07)
    Molecular translational self-diffusion, a measure of diffusive motion, provides information on the effective molecular hydrodynamic radius, as well as information on the properties of media or solution through which the molecule diffuses. Protein translational diffusion measured by pulsed-field gradient nuclear magnetic resonance (PFG-NMR) has seen increased application in structure and interaction studies, as structural changes or protein-protein interactions are often accompanied by alteration of their effective hydrodynamic radii. Unlike the analysis of complex mixtures by PFG-NMR, for monitoring changes of protein translational diffusion under various conditions, such as different stages of folding/unfolding, a partial region of the spectrum or even a single resonance is sufficient. We report translational diffusion coefficients measured by PFG-NMR with a modified stimulated echo (STE) sequence where band-selective pulses are employed for all three (1)H RF pulses. Compared with conventional non-selective sequence, e.g. the BPP-LED sequence, the advantage of this modified band-selective excitation short transient (BEST) version of STE (BEST-STE) sequence is multi-fold, namely: (1) potential sensitivity gain as in generalized BEST-based sequences, (2) water suppression is no longer required as the magnetization of solvent water is not perturbed during the measurement, and (3) dynamic range problems due to the presence of intense resonances from molecules other than the protein or peptide of interest, such as non-deuterated detergent micelles, are avoided.
  • Item
    No Preview Available
    Bacterial Fluorescent-dextran Diffusion Assay
    O’Brien-Simpson, N ; Pantarat, N ; Walsh, K ; Reynolds, E ; Sani, M-A ; Separovic, F (Bio-Protocol, LLC, 2014)