School of Chemistry - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 6 of 6
  • Item
    Thumbnail Image
    A simple route to full structural analysis of biophosphates and their application to materials discovery
    Hill, MR ; Bastow, TJ ; Bourgeois, L ; Turner, DR ; Seeber, A ; McBean, K ; Whitfield, HJ (ROYAL SOC CHEMISTRY, 2012)
    An integrated suite of synthesis and characterisation techniques that includes synchrotron-based single crystal, powder X-ray diffraction, nuclear magnetic resonance and electron diffraction have been employed to uncover two new distinct structures in the Ca(x)Ba(2-x)P(2)O(7) polymorphic phosphate system. These materials have particular relevance for their application as both biomaterials and phosphors. Calcium barium pyrophosphate, CaBaP(2)O(7), was shown by a combination of spectroscopic and diffraction techniques to have two polymorphs distinct in structure from all of the five previously reported polymorphs of Ca, Sr and Ba pyrophosphate. A high temperature polymorph HT-CaBaP(2)O(7) prepared at 1200 °C is orthorhombic, of space group P(212121) with a = 13.0494 Å, b = 8.9677 Å, c = 5.5444 Å. A low temperature polymorph LT-CaBaP(2)O(7), prepared below 1000 °C, is monoclinic with space group P2(1)/c and dimensions a = 12.065 Å, b = 10.582 Å, c = 9.515 Å, β = 94.609°.
  • Item
    No Preview Available
  • Item
    Thumbnail Image
    3d-Metal derivatives of the [CuI(SO3)4]7- ion: structure and magnetism
    Abrahams, BF ; Abrahams, CT ; Haywood, MG ; Hudson, TA ; Moubaraki, B ; Murray, KS ; Robson, R (ROYAL SOC CHEMISTRY, 2012)
    The Cu(SO(3))(4)(7-) anion, which consists of a tetrahedrally coordinated Cu(I) centre coordinated to four sulfur atoms, is able to act as a multidentate ligand in discrete and infinite supramolecular species. The slow oxidation of an aqueous solution of Na(7)Cu(SO(3))(4) yields a mixed oxidation state, 2D network of composition Na(5){[Cu(II)(H(2)O)][Cu(I)(SO(3))(4)]}·6H(2)O. The addition of Cu(II) and 2,2'-bipyridine to an aqueous Na(7)Cu(SO(3))(4) solution leads to the formation of a pentanuclear complex of composition {[Cu(II)(H(2)O)(bipy)](4)[Cu(I)(SO(3))(4)]}(+); a combination of hydrogen bonding and π-π stacking interactions leads to the generation of infinite parallel channels that are occupied by disordered nitrate anions and water molecules. A pair of Cu(SO(3))(4)(7-) anions each act as a tridentate ligand towards a single Mn(II) centre when Mn(II) ions are combined with an excess of Cu(SO(3))(4)(7-). An anionic pentanuclear complex of composition {[Cu(I)(SO(3))(4)](2)[Fe(III)(H(2)O)](3)(O)} is formed when Fe(II) is added to a Cu(+)/SO(3)(2-) solution. Hydrated ferrous [Fe(H(2)O)(6)(2+)] and sodium ions act as counterions for the complexes and are responsible for the formation of an extensive hydrogen bond network within the crystal. Magnetic susceptibility studies over the temperature range 2-300 K show that weak ferromagnetic coupling occurs within the Cu(II) containing chains of Na(5){[Cu(II)(H(2)O)][Cu(I)(SO(3))(4)]}·6H(2)O, while zero coupling exists in the pentanuclear cluster {[Cu(II)(H(2)O)(bipy)](4)[Cu(I)(SO(3))(4)]}(NO(3))·H(2)O. Weak Mn(II)-O-S-O-Mn(II) antiferromagnetic coupling occurs in Na(H(2)O)(6){[Cu(I)(SO(3))(4)][Mn(II)(H(2)O)(2)](3)}, the latter formed when Mn was in excess during synthesis. The compound, Na(3)(H(2)O)(6)[Fe(II)(H(2)O)(6)](2){[Cu(I)(SO(3))(4)](2)[Fe(III)(H(2)O)](3)(O)}·H(2)O, contained trace magnetic impurities that affected the expected magnetic behaviour.
  • Item
    Thumbnail Image
    Synthesis and redox properties of triarylmethane dye cation salts of anions [M6O19]2- (M = Mo, W)
    Guo, S-X ; Xie, J ; Gilbert-Wilson, R ; Birkett, SL ; Bond, AM ; Wedd, AG (ROYAL SOC CHEMISTRY, 2011)
    Four salts have been isolated combining the triarylmethane dye cations pararosaniline (PR(+)) and crystal violet (CV(+)) with the hexametalates [M(6)O(19)](2-) (M = Mo, W). A new hexatungstic acid H(2)[W(6)O(19)]·4dma (dma = dimethylacetamide) was isolated and is a useful synthon for hexatungstate salts. Single-crystal X-ray diffraction confirmed the presence of PR(+) and [Mo(6)O(19)](2-) ions in [PR](2)[Mo(6)O(19)]·6dmf (dmf = dimethylformamide). A number of charge-assisted hydrogen bonds N-H···O exist between the cation -NH(2) functions and the anion oxygen atoms. Comparative cyclic voltammetry of salts [A]Cl (A = PR, CV), [Bu(4)N](2)[M(6)O(19)](2-) and A(2)[M(6)O(19)] was established in MeCN and Me(2)SO solutions and of solids in contact with the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide [emim][tfsa]. In the molecular solvents, the reversible potential for the process [Mo(6)O(19)](2-/3-) is less negative than the first reduction processes of the dye cations. In contrast, that for [W(6)O(19)](2-/3-) is more negative. Spectro-electrochemistry and bulk electrolysis experiments reveal significantly different pathways in the two cases. In contrast, in the [emim][tfsa] medium, a positive shift in reduction potential of at least 400 mV is seen for the anion processes but relatively little change for the dye cation processes. This means that initial reduction of the anions always precedes that of the dyes, providing significant simplification of the complex voltammetric data. Chemically modified electrodes can be used in the ionic liquid because of slow dissolution kinetics. However, reduced anion salts dissolve rapidly, allowing dissolved phase electrochemistry to be examined. The electrochemistries of the oxidized salts A(2)[M(6)O(19)] are essentially those of the individual ions, although low level interaction of A(+) with reduced anions [M(6)O(19)](3-,4-) is evident. The work establishes protocols for synthesis and handling of intensely absorbing and relatively insoluble salts which can now be applied to systems containing more complex polyoxometalate anions.
  • Item
    Thumbnail Image
    Reactivity of one-, two-, three- and four-electron reduced forms of alpha-[P2W18O62](6-) generated by controlled potential electrolysis in water
    Bernardini, G ; Wedd, AG ; Bond, AM (Elsevier, 2011-08-01)
    One, two, three and four electron reduced forms of α-[P2W18O62]6− in aqueous acidic electrolyte media have been selectively generated by bulk electrolysis from a solution that has an initial pH of 3.6. The reactivities of the reduced polyoxometalate anions and identities of products formed in the presence and absence of dioxygen have been assessed via oxygen and hydrogen Clark-type electrodes, a pH electrode and rotating disk electrode voltammetry. [P2W18O62]7− is stable to protons but is slowly oxidized by dioxygen (timescale: hours to days) back to [P2W18O62]6−. In contrast, [P2W18O62]8− reacts more rapidly with O2 and slowly with H+, whereas generation of the [P2W18O62]9− and [P2W18O62]10− anion is accompanied by a large increase in pH and rapid reaction with O2 or, in its absence, with H+. Consequently, it is concluded that photocatalytic reactions based upon [P2W18O62]6− chemistry are only likely to be of significance if [P2W18O62]9− or more highly reduced species are generated and form part of the catalytic cycle.
  • Item
    Thumbnail Image
    Reversible Redox Reactions in an Extended Polyoxometalate Framework Solid
    RITCHIE, CHRISTOPHER ; Streb, Carsten ; Thiel, Johannes ; Mitchell, Scott, G ; Miras, Haralampos, N ; De-Liang, Long ; Boyd, Thomas ; Peacock, Robert. D ; McGlone, Thomas ; Cronin, Leroy ( 2008)