Doherty Institute - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    Human Immunodeficiency Virus (HIV)-Infected CCR6+ Rectal CD4+ T Cells and HIV Persistence On Antiretroviral Therapy
    Anderson, JL ; Khoury, G ; Fromentin, R ; Solomon, A ; Chomont, N ; Sinclair, E ; Milush, JM ; Hartogensis, W ; Bacchetti, P ; Roche, M ; Tumpach, C ; Gartner, M ; Pitman, MC ; Epling, CL ; Hoh, R ; Hecht, FM ; Somsouk, M ; Cameron, PU ; Deeks, SG ; Lewin, SR (OXFORD UNIV PRESS INC, 2020-03-01)
    BACKGROUND: Identifying where human immunodeficiency virus (HIV) persists in people living with HIV and receiving antiretroviral therapy is critical to develop cure strategies. We assessed the relationship of HIV persistence to expression of chemokine receptors and their chemokines in blood (n = 48) and in rectal (n = 20) and lymph node (LN; n = 8) tissue collected from people living with HIV who were receiving suppressive antiretroviral therapy. METHODS: Cell-associated integrated HIV DNA, unspliced HIV RNA, and chemokine messenger RNA were quantified by quantitative polymerase chain reaction. Chemokine receptor expression on CD4+ T cells was determined using flow cytometry. RESULTS: Integrated HIV DNA levels in CD4+ T cells, CCR6+CXCR3+ memory CD4+ T-cell frequency, and CCL20 expression (ligand for CCR6) were highest in rectal tissue, where HIV-infected CCR6+ T cells accounted for nearly all infected cells (median, 89.7%). Conversely in LN tissue, CCR6+ T cells were infrequent, and there was a statistically significant association of cell-associated HIV DNA and RNA with CCL19, CCL21, and CXCL13 chemokines. CONCLUSIONS: HIV-infected CCR6+ CD4+ T cells accounted for the majority of infected cells in rectal tissue. The different relationships between HIV persistence and T-cell subsets and chemokines in rectal and LN tissue suggest that different tissue-specific strategies may be required to eliminate HIV persistence and that assessment of biomarkers for HIV persistence may not be generalizable between blood and other tissues.
  • Item
    Thumbnail Image
    Understanding Factors That Modulate the Establishment of HIV Latency in Resting CD4+T-Cells In Vitro
    Anderson, JL ; Mota, TM ; Evans, VA ; Kumar, N ; Rezaei, SD ; Cheong, K ; Solomon, A ; Wightman, F ; Cameron, PU ; Lewin, SR ; Unutmaz, D (PUBLIC LIBRARY SCIENCE, 2016-07-06)
    Developing robust in vitro models of HIV latency is needed to better understand how latency is established, maintained and reversed. In this study, we examined the effects of donor variability, HIV titre and co-receptor usage on establishing HIV latency in vitro using two models of HIV latency. Using the CCL19 model of HIV latency, we found that in up to 50% of donors, CCL19 enhanced latent infection of resting CD4+ T-cells by CXCR4-tropic HIV in the presence of low dose IL-2. Increasing the infectious titre of CXCR4-tropic HIV increased both productive and latent infection of resting CD4+ T-cells. In a different model where myeloid dendritic cells (mDC) were co-cultured with resting CD4+ T-cells, we observed a higher frequency of latently infected cells in vitro than CCL19-treated or unstimulated CD4+ T-cells in the presence of low dose IL-2. In the DC-T-cell model, latency was established with both CCR5- and CXCR4-tropic virus but higher titres of CCR5-tropic virus was required in most donors. The establishment of latency in vitro through direct infection of resting CD4+ T-cells is significantly enhanced by CCL19 and mDC, but the efficiency is dependent on virus titre, co-receptor usage and there is significant donor variability.