Doherty Institute - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 7 of 7
  • Item
    Thumbnail Image
    Serological tests for COVID--19 Serological assays for SARS-CoV-2 present challenges and opportunities
    Bond, K ; Williams, E ; Howden, BP ; Williamson, DA (WILEY, 2020-11)
  • Item
    No Preview Available
    A hospital-wide response to multiple outbreaks of COVID-19 in health care workers: lessons learned from the field
    Buising, KL ; Williamson, D ; Cowie, BC ; MacLachlan, J ; Orr, E ; MacIsaac, C ; Williams, E ; Bond, K ; Muhi, S ; McCarthy, J ; Maier, AB ; Irving, L ; Heinjus, D ; Kelly, C ; Marshall, C (WILEY, 2021-02)
  • Item
    No Preview Available
    Implementation and evaluation of a novel real-time multiplex assay for SARS-CoV-2: in-field learnings from a clinical microbiology laboratory
    Williams, E ; Bond, K ; Chong, B ; Giltrap, D ; Eaton, M ; Kyriakou, P ; Calvert, P ; Zhang, B ; Siwan, M ; Howden, B ; Druce, J ; Catton, M ; Williamson, DA (ELSEVIER, 2020-12)
    The unprecedented scale of testing required to effectively control the coronavirus disease (COVID-19) pandemic has necessitated urgent implementation of rapid testing in clinical microbiology laboratories. To date, there are limited data available on the analytical performance of emerging commercially available assays for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and integration of these assays into laboratory workflows. Here, we performed a prospective validation study of a commercially available assay, the AusDiagnostics Coronavirus Typing (8-well) assay. Respiratory tract samples for SARS-CoV-2 testing were collected between 1 March and 25 March 2020. All positive samples and a random subset of negative samples were sent to a reference laboratory for confirmation. In total, 2673 samples were analysed using the Coronavirus Typing assay. The predominant sample type was a combined nasopharyngeal/throat swab (2640/2673; 98.8%). Fifty-four patients were positive for SARS-CoV-2 (2.0%) using the Coronavirus Typing assay; 53/54 (98.1%) positive results and 621/621 (100%) negative results were concordant with the reference laboratory. Compared to the reference laboratory gold standard, sensitivity of the Coronavirus Typing assay for SARS-CoV-2 was 100% (95% CI 93.2-100%), specificity 99.8% (95% CI 99.1-100%), positive predictive value 98.1% (95% CI 90.2-99.7%) and negative predictive value 100% (95% CI 99.4-100%). In many countries, standard regulatory requirements for the introduction of new assays have been replaced by emergency authorisations and it is critical that laboratories share their post-market validation experiences, as the consequences of widespread introduction of a suboptimal assay for SARS-CoV-2 are profound. Here, we share our in-field experience, and encourage other laboratories to follow suit.
  • Item
    No Preview Available
    Pandemic printing: a novel 3D-printed swab for detecting SARS-CoV-2
    Williams, E ; Bond, K ; Isles, N ; Chong, B ; Johnson, D ; Druce, J ; Hoang, T ; Ballard, SA ; Hall, V ; Muhi, S ; Buising, KL ; Lim, S ; Strugnell, D ; Catton, M ; Irving, LB ; Howden, BP ; Bert, E ; Williamson, DA (WILEY, 2020-09)
    OBJECTIVES: To design and evaluate 3D-printed nasal swabs for collection of samples for SARS-CoV-2 testing. DESIGN: An iterative design process was employed. Laboratory evaluation included in vitro assessment of mock nasopharyngeal samples spiked with two different concentrations of gamma-irradiated SARS-CoV-2. A prospective clinical study compared SARS-CoV-2 and human cellular material recovery by 3D-printed swabs and standard nasopharyngeal swabs. SETTING, PARTICIPANTS: Royal Melbourne Hospital, May 2020. Participants in the clinical evaluation were 50 hospital staff members attending a COVID-19 screening clinic and two inpatients with laboratory-confirmed COVID-19. INTERVENTION: In the clinical evaluation, a flocked nasopharyngeal swab sample was collected with the Copan ESwab and a mid-nasal sample from the other nostril was collected with the 3D-printed swab. RESULTS: In the laboratory evaluation, qualitative agreement with regard to SARS-CoV-2 detection in mock samples collected with 3D-printed swabs and two standard swabs was complete. In the clinical evaluation, qualitative agreement with regard to RNase P detection (a surrogate measure of adequate collection of human cellular material) in samples collected from 50 hospital staff members with standard and 3D-printed swabs was complete. Qualitative agreement with regard to SARS-CoV-2 detection in three pairs of 3D-printed mid-nasal and standard swab samples from two inpatients with laboratory-confirmed SARS-CoV-2 was also complete. CONCLUSIONS: Using 3D-printed swabs to collect nasal samples for SARS-CoV-2 testing is feasible, acceptable to patients and health carers, and convenient.
  • Item
    No Preview Available
    Isolation and rapid sharing of the 2019 novel coronavirus (SAR-CoV-2) from the first patient diagnosed with COVID-19 in Australia
    Caly, L ; Druce, J ; Roberts, J ; Bond, K ; Tran, T ; Kostecki, R ; Yoga, Y ; Naughton, W ; Taiaroa, G ; Seemann, T ; Schultz, MB ; Howden, BP ; Korman, TM ; Lewin, SR ; Williamson, DA ; Catton, MG (WILEY, 2020-06)
    OBJECTIVES: To describe the first isolation and sequencing of SARS-CoV-2 in Australia and rapid sharing of the isolate. SETTING: SARS-CoV-2 was isolated from a 58-year-old man from Wuhan, China who arrived in Melbourne on 19 January 2020 and was admitted to the Monash Medical Centre, Melbourne from the emergency department on 24 January 2020 with fever, cough, and progressive dyspnoea. MAJOR OUTCOMES: Clinical course and laboratory features of the first reported case of COVID-19 (the illness caused by SARS-CoV-2) in Australia; isolation, whole genome sequencing, imaging, and rapid sharing of virus from the patient. RESULTS: A nasopharyngeal swab and sputum collected when the patient presented to hospital were each positive for SARS-CoV-2 (reverse transcription polymerase chain reaction). Inoculation of Vero/hSLAM cells with material from the nasopharyngeal swab led to the isolation of SARS-CoV-2 virus in culture. Electron microscopy of the supernatant confirmed the presence of virus particles with morphology characteristic of viruses of the family Coronaviridae. Whole genome sequencing of the viral isolate and phylogenetic analysis indicated the isolate exhibited greater than 99.99% sequence identity with other publicly available SARS-CoV-2 genomes. Within 24 hours of isolation, the first Australian SARS-CoV-2 isolate was shared with local and overseas reference laboratories and major North American and European culture collections. CONCLUSIONS: The ability to rapidly identify, propagate, and internationally share our SARS-CoV-2 isolate is an important step in collaborative scientific efforts to deal effectively with this international public health emergency by developing better diagnostic procedures, vaccine candidates, and antiviral agents.
  • Item
    No Preview Available
    Evaluation of Serological Tests for SARS-CoV-2: Implications for Serology Testing in a Low-Prevalence Setting
    Bond, K ; Nicholson, S ; Lim, SM ; Karapanagiotidis, T ; Williams, E ; Johnson, D ; Hoang, T ; Sia, C ; Purcell, D ; Mordant, F ; Lewin, SR ; Catton, M ; Subbarao, K ; Howden, BP ; Williamson, DA (OXFORD UNIV PRESS INC, 2020-10-15)
    BACKGROUND: Robust serological assays are essential for long-term control of the COVID-19 pandemic. Many recently released point-of-care (PoCT) serological assays have been distributed with little premarket validation. METHODS: Performance characteristics for 5 PoCT lateral flow devices approved for use in Australia were compared to a commercial enzyme immunoassay (ELISA) and a recently described novel surrogate virus neutralization test (sVNT). RESULTS: Sensitivities for PoCT ranged from 51.8% (95% confidence interval [CI], 43.1%-60.4%) to 67.9% (95% CI, 59.4%-75.6%), and specificities from 95.6% (95% CI, 89.2%-98.8%) to 100.0% (95% CI, 96.1%-100.0%). ELISA sensitivity for IgA or IgG detection was 67.9% (95% CI, 59.4%-75.6%), increasing to 93.8% (95% CI, 85.0%-98.3%) for samples >14 days post symptom onset. sVNT sensitivity was 60.9% (95% CI, 53.2%-68.4%), rising to 91.2% (95% CI, 81.8%-96.7%) for samples >14 days post symptom onset, with specificity 94.4% (95% CI, 89.2%-97.5%). CONCLUSIONS: Performance characteristics for COVID-19 serological assays were generally lower than those reported by manufacturers. Timing of specimen collection relative to onset of illness or infection is crucial in reporting of performance characteristics for COVID-19 serological assays. The optimal algorithm for implementing serological testing for COVID-19 remains to be determined, particularly in low-prevalence settings.
  • Item
    Thumbnail Image
    Saliva as a Noninvasive Specimen for Detection of SARS-CoV-2
    Williams, E ; Bond, K ; Zhang, B ; Putland, M ; Williamson, DA ; McAdam, AJ (AMER SOC MICROBIOLOGY, 2020-08)