Doherty Institute - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 3 of 3
  • Item
    No Preview Available
    Longitudinal Analysis of Group A Streptococcus emm Types and emm Clusters in a High-Prevalence Setting: Relationship between Past and Future Infections.
    Campbell, PT ; Tong, SYC ; Geard, N ; Davies, MR ; Worthing, KA ; Lacey, JA ; Smeesters, PR ; Batzloff, MR ; Kado, J ; Jenney, AWJ ; Mcvernon, J ; Steer, AC (Oxford University Press (OUP), 2020-05-01)
    Group A Streptococcus is a pathogen of global importance, but despite the ubiquity of group A Streptococcus infections, the relationship between infection, colonization, and immunity is still not completely understood. The M protein, encoded by the emm gene, is a major virulence factor and vaccine candidate and forms the basis of a number of classification systems. Longitudinal patterns of emm types collected from 457 Fijian schoolchildren over a 10-month period were analyzed. No evidence of tissue tropism was observed, and there was no apparent selective pressure or constraint of emm types. Patterns of emm type acquisition suggest limited, if any, modification of future infection based on infection history. Where impetigo is the dominant mode of transmission, circulating emm types either may not be constrained by ecological niches or population immunity to the M protein, or they may require several infections over a longer period of time to induce such immunity.
  • Item
    Thumbnail Image
    A model of population dynamics with complex household structure and mobility: implications for transmission and control of communicable diseases
    Chisholm, RH ; Crammond, B ; Wu, Y ; Bowen, AC ; Campbell, PT ; Tong, SYC ; McVernon, J ; Geard, N (PEERJ INC, 2020-11-03)
    Households are known to be high-risk locations for the transmission of communicable diseases. Numerous modelling studies have demonstrated the important role of households in sustaining both communicable diseases outbreaks and endemic transmission, and as the focus for control efforts. However, these studies typically assume that households are associated with a single dwelling and have static membership. This assumption does not appropriately reflect households in some populations, such as those in remote Australian Aboriginal and Torres Strait Islander communities, which can be distributed across more than one physical dwelling, leading to the occupancy of individual dwellings changing rapidly over time. In this study, we developed an individual-based model of an infectious disease outbreak in communities with demographic and household structure reflective of a remote Australian Aboriginal community. We used the model to compare the dynamics of unmitigated outbreaks, and outbreaks constrained by a household-focused prophylaxis intervention, in communities exhibiting fluid vs. stable dwelling occupancy. We found that fluid dwelling occupancy can lead to larger and faster outbreaks in modelled scenarios, and may interfere with the effectiveness of household-focused interventions. Our findings suggest that while short-term restrictions on movement between dwellings may be beneficial during outbreaks, in the longer-term, strategies focused on reducing household crowding may be a more effective way to reduce the risk of severe outbreaks occurring in populations with fluid dwelling occupancy.
  • Item
    Thumbnail Image
    Estimation of the force of infection and infectious period of skin sores in remote Australian communities using interval-censored data
    Lydeamore, MJ ; Campbell, PT ; Price, DJ ; Wu, Y ; Marcato, AJ ; Cuningham, W ; Carapetis, JR ; Andrews, RM ; McDonald, M ; McVernon, J ; Tong, SYC ; McCaw, JM ; Kouyos, RD (Public Library of Science (PLoS), 2020-10-01)
    Prevalence of impetigo (skin sores) remains high in remote Australian Aboriginal communities, Fiji, and other areas of socio-economic disadvantage. Skin sore infections, driven primarily in these settings by Group A Streptococcus (GAS) contribute substantially to the disease burden in these areas. Despite this, estimates for the force of infection, infectious period and basic reproductive ratio—all necessary for the construction of dynamic transmission models—have not been obtained. By utilising three datasets each containing longitudinal infection information on individuals, we estimate each of these epidemiologically important parameters. With an eye to future study design, we also quantify the optimal sampling intervals for obtaining information about these parameters. We verify the estimation method through a simulation estimation study, and test each dataset to ensure suitability to the estimation method. We find that the force of infection differs by population prevalence, and the infectious period is estimated to be between 12 and 20 days. We also find that optimal sampling interval depends on setting, with an optimal sampling interval between 9 and 11 days in a high prevalence setting, and 21 and 27 days for a lower prevalence setting. These estimates unlock future model-based investigations on the transmission dynamics of skin sores.