Doherty Institute - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    Optimal timing of influenza vaccine during pregnancy: A systematic review and meta-analysis
    Cuningham, W ; Geard, N ; Fielding, JE ; Braat, S ; Madhi, SA ; Nunes, MC ; Christian, LM ; Lin, S-Y ; Lee, C-N ; Yamaguchi, K ; Bisgaard, H ; Chawes, B ; Chao, A-S ; Blanchard-Rohner, G ; Schlaudecker, EP ; Fisher, BM ; McVernon, J ; Moss, R (WILEY, 2019-09)
    BACKGROUND: Pregnant women have an elevated risk of illness and hospitalisation from influenza. Pregnant women are recommended to be prioritised for influenza vaccination during any stage of pregnancy. The risk of seasonal influenza varies substantially throughout the year in temperate climates; however, there is limited knowledge of how vaccination timing during pregnancy impacts the benefits received by the mother and foetus. OBJECTIVES: To compare antenatal vaccination timing with regard to influenza vaccine immunogenicity during pregnancy and transplacental transfer to their newborns. METHODS: Studies were eligible for inclusion if immunogenicity to influenza vaccine was evaluated in women stratified by trimester of pregnancy. Haemagglutination inhibition (HI) titres, stratified by trimester of vaccination, had to be measured at either pre-vaccination and within one month post-vaccination, post-vaccination and at delivery in the mother, or in cord/newborn blood. Authors searched PubMed, Scopus, Web of Science and EMBASE databases from inception until June 2016 and authors of identified studies were contacted for additional data. Extracted data were tabulated and summarised via random-effect meta-analyses and qualitative methods. RESULTS: Sixteen studies met the inclusion criteria. Meta-analyses found that compared with women vaccinated in an earlier trimester, those vaccinated in a later trimester had a greater fold increase in HI titres (1.33- to 1.96-fold) and higher HI titres in cord/newborn blood (1.21- to 1.64-fold). CONCLUSIONS: This review provides comparative analysis of the effect of vaccination timing on maternal immunogenicity and protection of the infant that is informative and relevant to current vaccine scheduling for pregnant women.
  • Item
    Thumbnail Image
    Model-Informed Risk Assessment and Decision Making for an Emerging Infectious Disease in the Asia-Pacific Region
    Moss, R ; Hickson, RI ; McVernon, J ; McCaw, JM ; Hort, K ; Black, J ; Madden, JR ; Tran, NH ; McBryde, ES ; Geard, N ; Liang, S (PUBLIC LIBRARY SCIENCE, 2016-09)
    BACKGROUND: Effective response to emerging infectious disease (EID) threats relies on health care systems that can detect and contain localised outbreaks before they reach a national or international scale. The Asia-Pacific region contains low and middle income countries in which the risk of EID outbreaks is elevated and whose health care systems may require international support to effectively detect and respond to such events. The absence of comprehensive data on populations, health care systems and disease characteristics in this region makes risk assessment and decisions about the provision of such support challenging. METHODOLOGY/PRINCIPAL FINDINGS: We describe a mathematical modelling framework that can inform this process by integrating available data sources, systematically explore the effects of uncertainty, and provide estimates of outbreak risk under a range of intervention scenarios. We illustrate the use of this framework in the context of a potential importation of Ebola Virus Disease into the Asia-Pacific region. Results suggest that, across a wide range of plausible scenarios, preemptive interventions supporting the timely detection of early cases provide substantially greater reductions in the probability of large outbreaks than interventions that support health care system capacity after an outbreak has commenced. CONCLUSIONS/SIGNIFICANCE: Our study demonstrates how, in the presence of substantial uncertainty about health care system infrastructure and other relevant aspects of disease control, mathematical models can be used to assess the constraints that limited resources place upon the ability of local health care systems to detect and respond to EID outbreaks in a timely and effective fashion. Our framework can help evaluate the relative impact of these constraints to identify resourcing priorities for health care system support, in order to inform principled and quantifiable decision making.