Doherty Institute - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 5 of 5
  • Item
    Thumbnail Image
    Reducing disease burden in an influenza pandemic by targeted delivery of neuraminidase inhibitors: mathematical models in the Australian context
    Moss, R ; McCaw, JM ; Cheng, AC ; Hurt, AC ; McVernon, J (BMC, 2016-10-10)
    BACKGROUND: Many nations maintain stockpiles of neuraminidase inhibitor (NAI) antiviral agents for use in influenza pandemics to reduce transmission and mitigate the course of clinical infection. Pandemic preparedness plans include the use of these stockpiles to deliver proportionate responses, informed by emerging evidence of clinical impact. Recent uncertainty about the effectiveness of NAIs has prompted these nations to reconsider the role of NAIs in pandemic response, with implications for pandemic planning and for NAI stockpile size. METHODS: We combined a dynamic model of influenza epidemiology with a model of the clinical care pathways in the Australian health care system to identify effective NAI strategies for reducing morbidity and mortality in pandemic events, and the stockpile requirements for these strategies. The models were informed by a 2015 assessment of NAI effectiveness against susceptibility, pathogenicity, and transmission of influenza. RESULTS: Liberal distribution of NAIs for early treatment in outpatient settings yielded the greatest benefits in all of the considered scenarios. Restriction of community-based treatment to risk groups was effective in those groups, but failed to prevent the large proportion of cases arising from lower risk individuals who comprise the majority of the population. CONCLUSIONS: These targeted strategies are only effective if they can be deployed within the constraints of existing health care infrastructure. This finding highlights the critical importance of identifying optimal models of care delivery for effective emergency health care response.
  • Item
    No Preview Available
    Characterising pandemic severity and transmissibility from data collected during first few hundred studies
    Black, AJ ; Geard, N ; McCaw, JM ; McVernon, J ; Ross, JV (ELSEVIER SCIENCE BV, 2017-06)
    Early estimation of the probable impact of a pandemic influenza outbreak can assist public health authorities to ensure that response measures are proportionate to the scale of the threat. Recently, frameworks based on transmissibility and severity have been proposed for initial characterization of pandemic impact. Data requirements to inform this assessment may be provided by "First Few Hundred" (FF100) studies, which involve surveillance-possibly in person, or via telephone-of household members of confirmed cases. This process of enhanced case finding enables detection of cases across the full spectrum of clinical severity, including the date of symptom onset. Such surveillance is continued until data for a few hundred cases, or satisfactory characterization of the pandemic strain, has been achieved. We present a method for analysing these data, at the household level, to provide a posterior distribution for the parameters of a model that can be interpreted in terms of severity and transmissibility of a pandemic strain. We account for imperfect case detection, where individuals are only observed with some probability that can increase after a first case is detected. Furthermore, we test this methodology using simulated data generated by an independent model, developed for a different purpose and incorporating more complex disease and social dynamics. Our method recovers transmissibility and severity parameters to a high degree of accuracy and provides a computationally efficient approach to estimating the impact of an outbreak in its early stages.
  • Item
    Thumbnail Image
    On the Role of CD8+ T Cells in Determining Recovery Time from Influenza Virus Infection
    Cao, P ; Wang, Z ; Yan, AWC ; McVernon, J ; Xu, J ; Heffernan, JM ; Kedzierska, K ; McCaw, JM (FRONTIERS MEDIA SA, 2016-12-20)
    Myriad experiments have identified an important role for CD8+ T cell response mechanisms in determining recovery from influenza A virus infection. Animal models of influenza infection further implicate multiple elements of the immune response in defining the dynamical characteristics of viral infection. To date, influenza virus models, while capturing particular aspects of the natural infection history, have been unable to reproduce the full gamut of observed viral kinetic behavior in a single coherent framework. Here, we introduce a mathematical model of influenza viral dynamics incorporating innate, humoral, and cellular immune components and explore its properties with a particular emphasis on the role of cellular immunity. Calibrated against a range of murine data, our model is capable of recapitulating observed viral kinetics from a multitude of experiments. Importantly, the model predicts a robust exponential relationship between the level of effector CD8+ T cells and recovery time, whereby recovery time rapidly decreases to a fixed minimum recovery time with an increasing level of effector CD8+ T cells. We find support for this relationship in recent clinical data from influenza A (H7N9) hospitalized patients. The exponential relationship implies that people with a lower level of naive CD8+ T cells may receive significantly more benefit from induction of additional effector CD8+ T cells arising from immunological memory, itself established through either previous viral infection or T cell-based vaccines.
  • Item
    Thumbnail Image
    Model-Informed Risk Assessment and Decision Making for an Emerging Infectious Disease in the Asia-Pacific Region
    Moss, R ; Hickson, RI ; McVernon, J ; McCaw, JM ; Hort, K ; Black, J ; Madden, JR ; Tran, NH ; McBryde, ES ; Geard, N ; Liang, S (PUBLIC LIBRARY SCIENCE, 2016-09)
    BACKGROUND: Effective response to emerging infectious disease (EID) threats relies on health care systems that can detect and contain localised outbreaks before they reach a national or international scale. The Asia-Pacific region contains low and middle income countries in which the risk of EID outbreaks is elevated and whose health care systems may require international support to effectively detect and respond to such events. The absence of comprehensive data on populations, health care systems and disease characteristics in this region makes risk assessment and decisions about the provision of such support challenging. METHODOLOGY/PRINCIPAL FINDINGS: We describe a mathematical modelling framework that can inform this process by integrating available data sources, systematically explore the effects of uncertainty, and provide estimates of outbreak risk under a range of intervention scenarios. We illustrate the use of this framework in the context of a potential importation of Ebola Virus Disease into the Asia-Pacific region. Results suggest that, across a wide range of plausible scenarios, preemptive interventions supporting the timely detection of early cases provide substantially greater reductions in the probability of large outbreaks than interventions that support health care system capacity after an outbreak has commenced. CONCLUSIONS/SIGNIFICANCE: Our study demonstrates how, in the presence of substantial uncertainty about health care system infrastructure and other relevant aspects of disease control, mathematical models can be used to assess the constraints that limited resources place upon the ability of local health care systems to detect and respond to EID outbreaks in a timely and effective fashion. Our framework can help evaluate the relative impact of these constraints to identify resourcing priorities for health care system support, in order to inform principled and quantifiable decision making.
  • Item
    Thumbnail Image
    Social encounter profiles of greater Melbourne residents, by location - a telephone survey
    Rolls, DA ; Geard, NL ; Warr, DJ ; Nathan, PM ; Robins, GL ; Pattison, PE ; McCaw, JM ; McVernon, J (BMC, 2015-11-02)
    BACKGROUND: Models of infectious disease increasingly seek to incorporate heterogeneity of social interactions to more accurately characterise disease spread. We measured attributes of social encounters in two areas of Greater Melbourne, using a telephone survey. METHODS: A market research company conducted computer assisted telephone interviews (CATIs) of residents of the Boroondara and Hume local government areas (LGAs), which differ markedly in ethnic composition, age distribution and household socioeconomic status. Survey items included household demographic and socio-economic characteristics, locations visited during the preceding day, and social encounters involving two-way conversation or physical contact. Descriptive summary measures were reported and compared using weight adjusted Wald tests of group means. RESULTS: The overall response rate was 37.6%, higher in Boroondara [n = 650, (46%)] than Hume [n = 657 (32%)]. Survey conduct through the CATI format was challenging, with implications for representativeness and data quality. Marked heterogeneity of encounter profiles was observed across age groups and locations. Household settings afforded greatest opportunity for prolonged close contact, particularly between women and children. Young and middle-aged men reported more age-assortative mixing, often with non-household members. Preliminary comparisons between LGAs suggested that mixing occurred in different settings. In addition, gender differences in mixing with household and non-household members, including strangers, were observed by area. CONCLUSIONS: Survey administration by CATI was challenging, but rich data were obtained, revealing marked heterogeneity of social behaviour. Marked dissimilarities in patterns of prolonged close mixing were demonstrated by gender. In addition, preliminary observations of between-area differences in socialisation warrant further evaluation.