Doherty Institute - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 4 of 4
  • Item
    Thumbnail Image
    Scabies and risk of skin sores in remote Australian Aboriginal communities: A self-controlled case series study
    Phyo, TZA ; Cuningham, W ; Hwang, K ; Andrews, RM ; Carapetis, J ; Kearns, T ; Clucas, D ; McVernon, J ; Simpson, JA ; Tong, S ; Campbell, PT ; Vinetz, JM (PUBLIC LIBRARY SCIENCE, 2018-07)
    BACKGROUND: Skin sores caused by Group A streptococcus (GAS) infection are a major public health problem in remote Aboriginal communities. Skin sores are often associated with scabies, which is evident in scabies intervention programs where a significant reduction of skin sores is seen after focusing solely on scabies control. Our study quantifies the strength of association between skin sores and scabies among Aboriginal children from the East Arnhem region in the Northern Territory. METHODS AND RESULTS: Pre-existing datasets from three published studies, which were conducted as part of the East Arnhem Healthy Skin Project (EAHSP), were analysed. Aboriginal children were followed from birth up to 4.5 years of age. Self-controlled case series design was used to determine the risks, within individuals, of developing skin sores when infected with scabies versus when there was no scabies infection. Participants were 11.9 times more likely to develop skin sores when infected with scabies compared with times when no scabies infection was evident (Incidence Rate Ratio (IRR) 11.9; 95% CI 10.3-13.7; p<0.001), and this was similar across the five Aboriginal communities. Children had lower risk of developing skin sores at age ≤1 year compared to at age >1 year (IRR 0.8; 95% CI 0.7-0.9). CONCLUSION: The association between scabies and skin sores is highly significant and indicates a causal relationship. The public health importance of scabies in northern Australia is underappreciated and a concerted approach is required to recognise and eliminate scabies as an important precursor of skin sores.
  • Item
    Thumbnail Image
    Implications of asymptomatic carriers for infectious disease transmission and control
    Chisholm, RH ; Campbell, PT ; Wu, Y ; Tong, SYC ; McVernon, J ; Geard, N (ROYAL SOC, 2018-02)
    For infectious pathogens such as Staphylococcus aureus and Streptococcus pneumoniae, some hosts may carry the pathogen and transmit it to others, yet display no symptoms themselves. These asymptomatic carriers contribute to the spread of disease but go largely undetected and can therefore undermine efforts to control transmission. Understanding the natural history of carriage and its relationship to disease is important for the design of effective interventions to control transmission. Mathematical models of infectious diseases are frequently used to inform decisions about control and should therefore accurately capture the role played by asymptomatic carriers. In practice, incorporating asymptomatic carriers into models is challenging due to the sparsity of direct evidence. This absence of data leads to uncertainty in estimates of model parameters and, more fundamentally, in the selection of an appropriate model structure. To assess the implications of this uncertainty, we systematically reviewed published models of carriage and propose a new model of disease transmission with asymptomatic carriage. Analysis of our model shows how different assumptions about the role of asymptomatic carriers can lead to different conclusions about the transmission and control of disease. Critically, selecting an inappropriate model structure, even when parameters are correctly estimated, may lead to over- or under-estimates of intervention effectiveness. Our results provide a more complete understanding of the role of asymptomatic carriers in transmission and highlight the importance of accurately incorporating carriers into models used to make decisions about disease control.
  • Item
    Thumbnail Image
    Indigenous Australian household structure: a simple data collection tool and implications for close contact transmission of communicable diseases
    vino, T ; Singh, GR ; Davision, B ; Campbell, PT ; Lydeamore, MJ ; Robinson, A ; McVernon, J ; Tong, SYC ; Geard, N (PEERJ INC, 2017-10-26)
    Households are an important location for the transmission of communicable diseases. Social contact between household members is typically more frequent, of greater intensity, and is more likely to involve people of different age groups than contact occurring in the general community. Understanding household structure in different populations is therefore fundamental to explaining patterns of disease transmission in these populations. Indigenous populations in Australia tend to live in larger households than non-Indigenous populations, but limited data are available on the structure of these households, and how they differ between remote and urban communities. We have developed a novel approach to the collection of household structure data, suitable for use in a variety of contexts, which provides a detailed view of age, gender, and room occupancy patterns in remote and urban Australian Indigenous households. Here we report analysis of data collected using this tool, which quantifies the extent of crowding in Indigenous households, particularly in remote areas. We use these data to generate matrices of age-specific contact rates, as used by mathematical models of infectious disease transmission. To demonstrate the impact of household structure, we use a mathematical model to simulate an influenza-like illness in different populations. Our simulations suggest that outbreaks in remote populations are likely to spread more rapidly and to a greater extent than outbreaks in non-Indigenous populations.
  • Item
    Thumbnail Image
    Whole genome sequencing reveals extensive community-level transmission of group A Streptococcus in remote communities
    Bowen, AC ; Harris, T ; Holt, DC ; Giffard, PM ; Carapetis, JR ; Campbell, PT ; McVernon, J ; Tong, SYC (CAMBRIDGE UNIV PRESS, 2016-07)
    Impetigo is common in remote Indigenous children of northern Australia, with the primary driver in this context being Streptococcus pyogenes [or group A Streptococcus (GAS)]. To reduce the high burden of impetigo, the transmission dynamics of GAS must be more clearly elucidated. We performed whole genome sequencing on 31 GAS isolates collected in a single community from children in 11 households with ⩾2 GAS-infected children. We aimed to determine whether transmission was occurring principally within households or across the community. The 31 isolates were represented by nine multilocus sequence types and isolates within each sequence type differed from one another by only 0-3 single nucleotide polymorphisms. There was evidence of extensive transmission both within households and across the community. Our findings suggest that strategies to reduce the burden of impetigo in this setting will need to extend beyond individual households, and incorporate multi-faceted, community-wide approaches.