Doherty Institute - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 3 of 3
  • Item
    Thumbnail Image
    Evolution of DC-SIGN use revealed by fitness studies of R5 HIV-I variants emerging during AIDS progression
    Borggren, M ; Repits, J ; Kuylenstierna, C ; Sterjovski, J ; Churchill, MJ ; Purcell, DFJ ; Karlsson, A ; Albert, J ; Gorry, PR ; Jansson, M (BMC, 2008-03-27)
    BACKGROUND: At early stages of infection CCR5 is the predominant HIV-1 coreceptor, but in approximately 50% of those infected CXCR4-using viruses emerge with disease progression. This coreceptor switch is correlated with an accelerated progression. However, those that maintain virus exclusively restricted to CCR5 (R5) also develop AIDS. We have previously reported that R5 variants in these "non-switch virus" patients evolve during disease progression towards a more replicative phenotype exhibiting altered CCR5 coreceptor interactions. DC-SIGN is a C-type lectin expressed by dendritic cells that HIV-1 may bind and utilize for enhanced infection of T cells in trans. To further explore the evolution of the R5 phenotype we analyzed sequential R5 isolates obtained before and after AIDS onset, i.e. at the chronic stage and during end-stage disease, with regard to efficiency of DC-SIGN use in trans-infections. RESULTS: Results from binding and trans-infection assays showed that R5 viruses emerging during end-stage AIDS disease displayed reduced ability to use DC-SIGN. To better understand viral determinants underlying altered DC-SIGN usage by R5 viruses, we cloned and sequenced the HIV-1 env gene. We found that end-stage R5 viruses lacked potential N-linked glycosylation sites (PNGS) in the gp120 V2 and V4 regions, which were present in the majority of the chronic stage R5 variants. One of these sites, amino acid position 160 (aa160) in the V2 region, also correlated with efficient use of DC-SIGN for binding and trans-infections. In fitness assays, where head-to-head competitions between chronic stage and AIDS R5 viruses were setup in parallel direct and DC-SIGN-mediated infections, results were further supported. Competitions revealed that R5 viruses obtained before AIDS onset, containing the V2 PNGS at aa160, were selected for in the trans-infection. Whereas, in agreement with our previous studies, the opposite was seen in direct target cell infections where end-stage viruses out-competed the chronic stage viruses. CONCLUSION: Results of our study suggest R5 virus variants with diverse fitness for direct and DC-SIGN-mediated trans-infections evolve within infected individuals at end-stage disease. In addition, our results point to the importance of a glycosylation site within the gp120 V2 region for efficient DC-SIGN use of HIV-1 R5 viruses.
  • Item
    Thumbnail Image
    Phenotype and envelope gene diversity of nef-deleted HIV-1 isolated from long-term survivors infected from a single source
    Gray, L ; Churchill, MJ ; Sterjovski, J ; Witlox, K ; Learmont, JC ; Sullivan, JS ; Wesselingh, SL ; Gabuzda, D ; Cunningham, AL ; McPhee, DA ; Gorry, PR (BMC, 2007-07-16)
    BACKGROUND: The Sydney blood bank cohort (SBBC) of long-term survivors consists of multiple individuals infected with attenuated, nef-deleted variants of human immunodeficiency virus type 1 (HIV-1) acquired from a single source. Long-term prospective studies have demonstrated that the SBBC now comprises slow progressors (SP) as well as long-term nonprogressors (LTNP). Convergent evolution of nef sequences in SBBC SP and LTNP indicates the in vivo pathogenicity of HIV-1 in SBBC members is dictated by factors other than nef. To better understand mechanisms underlying the pathogenicity of nef-deleted HIV-1, we examined the phenotype and env sequence diversity of sequentially isolated viruses (n = 2) from 3 SBBC members. RESULTS: The viruses characterized here were isolated from two SP spanning a three or six year period during progressive HIV-1 infection (subjects D36 and C98, respectively) and from a LTNP spanning a two year period during asymptomatic, nonprogressive infection (subject C18). Both isolates from D36 were R5X4 phenotype and, compared to control HIV-1 strains, replicated to low levels in peripheral blood mononuclear cells (PBMC). In contrast, both isolates from C98 and C18 were CCR5-restricted. Both viruses isolated from C98 replicated to barely detectable levels in PBMC, whereas both viruses isolated from C18 replicated to low levels, similar to those isolated from D36. Analysis of env by V1V2 and V3 heteroduplex tracking assay, V1V2 length polymorphisms, sequencing and phylogenetic analysis showed distinct intra- and inter-patient env evolution. CONCLUSION: Independent evolution of env despite convergent evolution of nef may contribute to the in vivo pathogenicity of nef-deleted HIV-1 in SBBC members, which may not necessarily be associated with changes in replication capacity or viral coreceptor specificity.
  • Item
    Thumbnail Image
    Pathogenicity and immunogenicity of attenuated, nef-deleted HIV-1 strains in vivo
    Gorry, PR ; McPhee, DA ; Verity, E ; Dyer, WB ; Wesselingh, SL ; Learmont, J ; Sullivan, JS ; Roche, M ; Zaunders, JJ ; Gabuzda, D ; Crowe, SM ; Mills, J ; Lewin, SR ; Brew, BJ ; Cunningham, AL ; Churchill, MJ (BMC, 2007-09-23)
    In efforts to develop an effective vaccine, sterilizing immunity to primate lentiviruses has only been achieved by the use of live attenuated viruses carrying major deletions in nef and other accessory genes. Although live attenuated HIV vaccines are unlikely to be developed due to a myriad of safety concerns, opportunities exist to better understand the correlates of immune protection against HIV infection by studying rare cohorts of long-term survivors infected with attenuated, nef-deleted HIV strains such as the Sydney blood bank cohort (SBBC). Here, we review studies of viral evolution, pathogenicity, and immune responses to HIV infection in SBBC members. The studies show that potent, broadly neutralizing anti-HIV antibodies and robust CD8+ T-cell responses to HIV infection were not necessary for long-term control of HIV infection in a subset of SBBC members, and were not sufficient to prevent HIV sequence evolution, augmentation of pathogenicity and eventual progression of HIV infection in another subset. However, a persistent T-helper proliferative response to HIV p24 antigen was associated with long-term control of infection. Together, these results underscore the importance of the host in the eventual outcome of infection. Thus, whilst generating an effective antibody and CD8+ T-cell response are an essential component of vaccines aimed at preventing primary HIV infection, T-helper responses may be important in the generation of an effective therapeutic vaccine aimed at blunting chronic HIV infection.