Doherty Institute - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 15
  • Item
    Thumbnail Image
    Whole genome sequencing for tuberculosis in Victoria, Australia: A genomic implementation study from 2017 to 2020
    Dale, K ; Globan, M ; Horan, K ; Sherry, N ; Ballard, S ; Tay, EL ; Bittmann, S ; Meagher, N ; Price, DJ ; Howden, BP ; Williamson, DA ; Denholm, J (ELSEVIER, 2022-11)
    BACKGROUND: Whole genome sequencing (WGS) is increasingly used by tuberculosis (TB) programs to monitor Mycobacterium tuberculosis (Mtb) transmission. We aimed to characterise the molecular epidemiology of TB and Mtb transmission in the low-incidence setting of Victoria, Australia, and assess the utility of WGS. METHODS: WGS was performed on all first Mtb isolates from TB cases from 2017 to 2020. Potential clusters (≤12 single nucleotide polymorphisms [SNPs]) were investigated for epidemiological links. Transmission events in highly-related (≤5 SNPs) clusters were classified as likely or possible, based on the presence or absence of an epidemiological link, respectively. Case characteristics and transmission settings (as defined by case relationship) were summarised. Poisson regression was used to examine associations with secondary case number. FINDINGS: Of 1844 TB cases, 1276 (69.2%) had sequenced isolates, with 182 (14.2%) in 54 highly-related clusters, 2-40 cases in size. Following investigation, 140 cases (11.0% of sequenced) were classified as resulting from likely/possible local-transmission, including 82 (6.4%) for which transmission was likely. Common identified transmission settings were social/religious (26.4%), household (22.9%) and family living in different households (7.1%), but many were uncertain (41.4%). While household transmission featured in many clusters (n = 24), clusters were generally smaller (median = 3 cases) than the fewer that included transmission in social/religious settings (n = 12, median = 7.5 cases). Sputum-smear-positivity was associated with higher secondary case numbers. INTERPRETATION: WGS results suggest Mtb transmission commonly occurs outside the household in our low-incidence setting. Further work is required to optimise the use of WGS in public health management of TB. FUNDING: The Victorian Tuberculosis Program receives block funding for activities including case management and contact tracing from the Victorian Department of Health. No specific funding for this report was received by manuscript authors or the Victorian Tuberculosis Program, and the funders had no role in the study design, data collection, data analysis, interpretation or report writing.
  • Item
    Thumbnail Image
    Serological tests for COVID--19 Serological assays for SARS-CoV-2 present challenges and opportunities
    Bond, K ; Williams, E ; Howden, BP ; Williamson, DA (WILEY, 2020-11)
  • Item
    Thumbnail Image
    Multi-site assessment of rapid, point-of-care antigen testing for the diagnosis of SARS-CoV-2 infection in a low-prevalence setting: A validation and implementation study
    Muhi, S ; Tayler, N ; Hoang, T ; Ballard, SA ; Graham, M ; Rojek, A ; Kwong, JC ; Trubiano, JA ; Smibert, O ; Drewett, G ; James, F ; Gardiner, E ; Chea, S ; Isles, N ; Sait, M ; Pasricha, S ; Taiaroa, G ; McAuley, J ; Williams, E ; Gibney, KB ; Stinear, TP ; Bond, K ; Lewin, SR ; Putland, M ; Howden, BP ; Williamson, DA (ELSEVIER, 2021-04)
    BACKGROUND: In Australia, COVID-19 diagnosis relies on RT-PCR testing which is relatively costly and time-consuming. To date, few studies have assessed the performance and implementation of rapid antigen-based SARS-CoV-2 testing in a setting with a low prevalence of COVID-19 infections, such as Australia. METHODS: This study recruited participants presenting for COVID-19 testing at three Melbourne metropolitan hospitals during a period of low COVID-19 prevalence. The Abbott PanBioTM COVID-19 Ag point-of-care test was performed alongside RT-PCR. In addition, participants with COVID-19 notified to the Victorian Government were invited to provide additional swabs to aid validation. Implementation challenges were also documented. FINDINGS: The specificity of the Abbott PanBioTM COVID-19 Ag test was 99.96% (95% CI 99.73 - 100%). Sensitivity amongst participants with RT-PCR-confirmed infection was dependent upon the duration of symptoms reported, ranging from 77.3% (duration 1 to 33 days) to 100% in those within seven days of symptom onset. A range of implementation challenges were identified which may inform future COVID-19 testing strategies in a low prevalence setting. INTERPRETATION: Given the high specificity, antigen-based tests may be most useful in rapidly triaging public health and hospital resources while expediting confirmatory RT-PCR testing. Considering the limitations in test sensitivity and the potential for rapid transmission in susceptible populations, particularly in hospital settings, careful consideration is required for implementation of antigen testing in a low prevalence setting. FUNDING: This work was funded by the Victorian Department of Health and Human Services. The funder was not involved in data analysis or manuscript preparation.
  • Item
    No Preview Available
    A hospital-wide response to multiple outbreaks of COVID-19 in health care workers: lessons learned from the field
    Buising, KL ; Williamson, D ; Cowie, BC ; MacLachlan, J ; Orr, E ; MacIsaac, C ; Williams, E ; Bond, K ; Muhi, S ; McCarthy, J ; Maier, AB ; Irving, L ; Heinjus, D ; Kelly, C ; Marshall, C (WILEY, 2021-02)
  • Item
    No Preview Available
    Implementation and evaluation of a novel real-time multiplex assay for SARS-CoV-2: in-field learnings from a clinical microbiology laboratory
    Williams, E ; Bond, K ; Chong, B ; Giltrap, D ; Eaton, M ; Kyriakou, P ; Calvert, P ; Zhang, B ; Siwan, M ; Howden, B ; Druce, J ; Catton, M ; Williamson, DA (ELSEVIER, 2020-12)
    The unprecedented scale of testing required to effectively control the coronavirus disease (COVID-19) pandemic has necessitated urgent implementation of rapid testing in clinical microbiology laboratories. To date, there are limited data available on the analytical performance of emerging commercially available assays for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and integration of these assays into laboratory workflows. Here, we performed a prospective validation study of a commercially available assay, the AusDiagnostics Coronavirus Typing (8-well) assay. Respiratory tract samples for SARS-CoV-2 testing were collected between 1 March and 25 March 2020. All positive samples and a random subset of negative samples were sent to a reference laboratory for confirmation. In total, 2673 samples were analysed using the Coronavirus Typing assay. The predominant sample type was a combined nasopharyngeal/throat swab (2640/2673; 98.8%). Fifty-four patients were positive for SARS-CoV-2 (2.0%) using the Coronavirus Typing assay; 53/54 (98.1%) positive results and 621/621 (100%) negative results were concordant with the reference laboratory. Compared to the reference laboratory gold standard, sensitivity of the Coronavirus Typing assay for SARS-CoV-2 was 100% (95% CI 93.2-100%), specificity 99.8% (95% CI 99.1-100%), positive predictive value 98.1% (95% CI 90.2-99.7%) and negative predictive value 100% (95% CI 99.4-100%). In many countries, standard regulatory requirements for the introduction of new assays have been replaced by emergency authorisations and it is critical that laboratories share their post-market validation experiences, as the consequences of widespread introduction of a suboptimal assay for SARS-CoV-2 are profound. Here, we share our in-field experience, and encourage other laboratories to follow suit.
  • Item
    No Preview Available
    Sample pooling on the Cepheid Xpert® Xpress SARS-CoV-2 assay
    Graham, M ; Williams, E ; Isles, N ; Buadromo, E ; Toatu, T ; Druce, J ; Catton, M ; Lin, C ; Howden, BP ; Williamson, DA (ELSEVIER SCIENCE INC, 2021-02)
    The COVID-19 pandemic has placed unprecedented global demand on laboratory supplies required for testing. Sample pooling has been investigated by laboratories as a strategy to preserve testing capacity. We evaluate the performance of Cepheid Xpert® Xpress SARS-CoV-2 RT-PCR assay for testing samples in pools of 4 and 6. Clinical samples containing SARS-CoV-2, and confirmed negative clinical samples were used to create sample pools. Clinical samples had 'neat' Xpert® E gene cycle threshold values ranging between 20 and 28 and all were detected qualitatively when contained in pools of 4 or 6 samples. For these samples, pooling had a median change in cycle threshold value of 2.0 in pools of 4, and of 2.9 in pools of 6. With the use of Cepheid Xpert® Xpress SARS-CoV-2 RT-PCR assay, pooling of 4 or 6 samples may be an effective strategy to increase testing capacity.
  • Item
    No Preview Available
    Pandemic printing: a novel 3D-printed swab for detecting SARS-CoV-2
    Williams, E ; Bond, K ; Isles, N ; Chong, B ; Johnson, D ; Druce, J ; Hoang, T ; Ballard, SA ; Hall, V ; Muhi, S ; Buising, KL ; Lim, S ; Strugnell, D ; Catton, M ; Irving, LB ; Howden, BP ; Bert, E ; Williamson, DA (WILEY, 2020-09)
    OBJECTIVES: To design and evaluate 3D-printed nasal swabs for collection of samples for SARS-CoV-2 testing. DESIGN: An iterative design process was employed. Laboratory evaluation included in vitro assessment of mock nasopharyngeal samples spiked with two different concentrations of gamma-irradiated SARS-CoV-2. A prospective clinical study compared SARS-CoV-2 and human cellular material recovery by 3D-printed swabs and standard nasopharyngeal swabs. SETTING, PARTICIPANTS: Royal Melbourne Hospital, May 2020. Participants in the clinical evaluation were 50 hospital staff members attending a COVID-19 screening clinic and two inpatients with laboratory-confirmed COVID-19. INTERVENTION: In the clinical evaluation, a flocked nasopharyngeal swab sample was collected with the Copan ESwab and a mid-nasal sample from the other nostril was collected with the 3D-printed swab. RESULTS: In the laboratory evaluation, qualitative agreement with regard to SARS-CoV-2 detection in mock samples collected with 3D-printed swabs and two standard swabs was complete. In the clinical evaluation, qualitative agreement with regard to RNase P detection (a surrogate measure of adequate collection of human cellular material) in samples collected from 50 hospital staff members with standard and 3D-printed swabs was complete. Qualitative agreement with regard to SARS-CoV-2 detection in three pairs of 3D-printed mid-nasal and standard swab samples from two inpatients with laboratory-confirmed SARS-CoV-2 was also complete. CONCLUSIONS: Using 3D-printed swabs to collect nasal samples for SARS-CoV-2 testing is feasible, acceptable to patients and health carers, and convenient.
  • Item
    No Preview Available
    Isolation and rapid sharing of the 2019 novel coronavirus (SAR-CoV-2) from the first patient diagnosed with COVID-19 in Australia
    Caly, L ; Druce, J ; Roberts, J ; Bond, K ; Tran, T ; Kostecki, R ; Yoga, Y ; Naughton, W ; Taiaroa, G ; Seemann, T ; Schultz, MB ; Howden, BP ; Korman, TM ; Lewin, SR ; Williamson, DA ; Catton, MG (WILEY, 2020-06)
    OBJECTIVES: To describe the first isolation and sequencing of SARS-CoV-2 in Australia and rapid sharing of the isolate. SETTING: SARS-CoV-2 was isolated from a 58-year-old man from Wuhan, China who arrived in Melbourne on 19 January 2020 and was admitted to the Monash Medical Centre, Melbourne from the emergency department on 24 January 2020 with fever, cough, and progressive dyspnoea. MAJOR OUTCOMES: Clinical course and laboratory features of the first reported case of COVID-19 (the illness caused by SARS-CoV-2) in Australia; isolation, whole genome sequencing, imaging, and rapid sharing of virus from the patient. RESULTS: A nasopharyngeal swab and sputum collected when the patient presented to hospital were each positive for SARS-CoV-2 (reverse transcription polymerase chain reaction). Inoculation of Vero/hSLAM cells with material from the nasopharyngeal swab led to the isolation of SARS-CoV-2 virus in culture. Electron microscopy of the supernatant confirmed the presence of virus particles with morphology characteristic of viruses of the family Coronaviridae. Whole genome sequencing of the viral isolate and phylogenetic analysis indicated the isolate exhibited greater than 99.99% sequence identity with other publicly available SARS-CoV-2 genomes. Within 24 hours of isolation, the first Australian SARS-CoV-2 isolate was shared with local and overseas reference laboratories and major North American and European culture collections. CONCLUSIONS: The ability to rapidly identify, propagate, and internationally share our SARS-CoV-2 isolate is an important step in collaborative scientific efforts to deal effectively with this international public health emergency by developing better diagnostic procedures, vaccine candidates, and antiviral agents.
  • Item
    No Preview Available
    Evaluation of Serological Tests for SARS-CoV-2: Implications for Serology Testing in a Low-Prevalence Setting
    Bond, K ; Nicholson, S ; Lim, SM ; Karapanagiotidis, T ; Williams, E ; Johnson, D ; Hoang, T ; Sia, C ; Purcell, D ; Mordant, F ; Lewin, SR ; Catton, M ; Subbarao, K ; Howden, BP ; Williamson, DA (OXFORD UNIV PRESS INC, 2020-10-15)
    BACKGROUND: Robust serological assays are essential for long-term control of the COVID-19 pandemic. Many recently released point-of-care (PoCT) serological assays have been distributed with little premarket validation. METHODS: Performance characteristics for 5 PoCT lateral flow devices approved for use in Australia were compared to a commercial enzyme immunoassay (ELISA) and a recently described novel surrogate virus neutralization test (sVNT). RESULTS: Sensitivities for PoCT ranged from 51.8% (95% confidence interval [CI], 43.1%-60.4%) to 67.9% (95% CI, 59.4%-75.6%), and specificities from 95.6% (95% CI, 89.2%-98.8%) to 100.0% (95% CI, 96.1%-100.0%). ELISA sensitivity for IgA or IgG detection was 67.9% (95% CI, 59.4%-75.6%), increasing to 93.8% (95% CI, 85.0%-98.3%) for samples >14 days post symptom onset. sVNT sensitivity was 60.9% (95% CI, 53.2%-68.4%), rising to 91.2% (95% CI, 81.8%-96.7%) for samples >14 days post symptom onset, with specificity 94.4% (95% CI, 89.2%-97.5%). CONCLUSIONS: Performance characteristics for COVID-19 serological assays were generally lower than those reported by manufacturers. Timing of specimen collection relative to onset of illness or infection is crucial in reporting of performance characteristics for COVID-19 serological assays. The optimal algorithm for implementing serological testing for COVID-19 remains to be determined, particularly in low-prevalence settings.
  • Item
    Thumbnail Image
    Distribution of Streptococcal Pharyngitis and Acute Rheumatic Fever, Auckland, New Zealand, 2010-2016
    Oliver, J ; Upton, A ; Jack, SJ ; Pierse, N ; Williamson, DA ; Baker, MG (CENTERS DISEASE CONTROL & PREVENTION, 2020-06)
    Group A Streptococcus (GAS) pharyngitis is a key initiator of acute rheumatic fever (ARF). In New Zealand, ARF cases occur more frequently among persons of certain ethnic and socioeconomic groups. We compared GAS pharyngitis estimates (1,257,058 throat swab samples) with ARF incidence (792 hospitalizations) in Auckland during 2010-2016. Among children 5-14 years of age in primary healthcare clinics, GAS pharyngitis was detected in similar proportions across ethnic groups (≈19%). Relative risk for GAS pharyngitis was moderately elevated among children of Pacific Islander and Māori ethnicities compared with those of European/other ethnicities, but risk for ARF was highly elevated for children of Pacific Islander and Māori ethnicity compared with those of European/other ethnicity. That ethnic disparities are much higher among children with ARF than among those with GAS pharyngitis implies that ARF is driven by factors other than rate of GAS pharyngitis alone.