School of Agriculture, Food and Ecosystem Sciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 9 of 9
  • Item
    Thumbnail Image
    Spatial expression of CLAVATA3 in the shoot apical meristem suggests it is not a stem cell marker in soybean
    Wong, CE ; Singh, MB ; Bhalla, PL (OXFORD UNIV PRESS, 2013-12)
    CLAVATA3 (CLV3), a stem cell marker in Arabidopsis thaliana, encodes a secreted peptide that maintains the stem cell population within the shoot apical meristem. This work investigated the CLV3 orthologue in a major legume crop, soybean (GmCLV3). Instead of being expressed in the three outermost layers of the meristem as in Arabidopsis, GmCLV3 was expressed deeper in the central zone beneath the fourth layer (L4) of the meristem, overlapping with the expression of soybean WUSCHEL. Subsequent investigation using an alternative stem cell marker (GmLOG1) revealed its expression within layers L2-L4, indicating that GmCLV3 is not a stem cell marker. Overexpression studies of GmCLV3 in Arabidopsis and complementation of clv3-2 mutant suggest similar functional capacity to that of Arabidopsis CLV3. The expression of soybean CLV1, which encodes a receptor for CLV3 in Arabidopsis, was not detectable in the central zone of the meristem via reverse-transcription PCR analysis of amplified RNA from laser-microdissected samples or in situ, implicating a diverged pathway in soybean. This study also reports the novel expression of GmLOG1 in initials of axillary meristem in the boundary region between the SAM and developing leaf primordia, before the expression of GmWUS or GmCLV3, indicating cytokinin as one of the earliest signals in initiating and specifying the stem cell population.
  • Item
    Thumbnail Image
    Novel members of the AGAMOUS LIKE 6 subfamily of MIKCC-type MADS-box genes in soybean
    Wong, CE ; Singh, MB ; Bhalla, PL (BMC, 2013-07-20)
    BACKGROUND: The classical (C) MIKC-type MADS-box transcription factors comprise one gene family that plays diverse roles in the flowering process ranging from floral initiation to the development of floral organs. Despite their importance in regulating developmental processes that impact crop yield, they remain largely unexplored in the major legume oilseed crop, soybean. RESULTS: We identified 57 MIKC(c)-type transcription factors from soybean and determined the in silico gene expression profiles of the soybean MIKC(c)-type genes across different tissues. Our study implicates three MIKC(c)-type transcription factors as novel members of the AGAMOUS LIKE 6 (AGL6) subfamily of the MIKC(C)-type MADS-box genes, and we named this sister clade PsMADS3. While similar genes were identified in other legume species, poplar and grape, no such gene is represented in Arabidopsis thaliana or rice. RT-PCR analysis on these three soybean PsMADS3 genes during early floral initiation processes revealed their temporal expression similar to that of APETALA1, a gene known to function as a floral meristem identity gene. However, RNA in situ hybridisation showed that their spatial expression patterns are markedly different from those of APETALA1. CONCLUSION: Legume flower development system differs from that in the model plant, Arabidopsis. There is an overlap in the initiation of different floral whorls in soybean, and inflorescent meristems can revert to leaf production depending on the environmental conditions. MIKC(C)-type MADS-box genes have been shown to play key regulatory roles in different stages of flower development. We identified members of the PsMADS3 sub-clade in legumes that show differential spatial expression during floral initiation, indicating their potential novel roles in the floral initiation process. The results from this study will contribute to a better understanding of legume-specific floral developmental processes.
  • Item
    Thumbnail Image
    The Dynamics of Soybean Leaf and Shoot Apical Meristem Transcriptome Undergoing Floral Initiation Process
    Wong, CE ; Singh, MB ; Bhalla, PL ; Sun, M-X (PUBLIC LIBRARY SCIENCE, 2013-06-06)
    Flowering process governs seed set and thus affects agricultural productivity. Soybean, a major legume crop, requires short-day photoperiod conditions for flowering. While leaf-derived signal(s) are essential for the photoperiod-induced floral initiation process at the shoot apical meristem, molecular events associated with early floral transition stages in either leaves or shoot apical meristems are not well understood. To provide novel insights into the molecular basis of floral initiation, RNA-Seq was used to characterize the soybean transcriptome of leaf and micro-dissected shoot apical meristem at different time points after short-day treatment. Shoot apical meristem expressed a higher number of transcripts in comparison to that of leaf highlighting greater diversity and abundance of transcripts expressed in the shoot apical meristem. A total of 2951 shoot apical meristem and 13,609 leaf sequences with significant profile changes during the time course examined were identified. Most changes in mRNA level occurred after 1short-day treatment. Transcripts involved in mediating responses to stimulus including hormones or in various metabolic processes represent the top enriched GO functional category for the SAM and leaf dataset, respectively. Transcripts associated with protein degradation were also significantly changing in leaf and SAM implicating their involvement in triggering the developmental switch. RNA-Seq analysis of shoot apical meristem and leaf from soybean undergoing floral transition reveal major reprogramming events in leaves and the SAM that point toward hormones gibberellins (GA) and cytokinin as key regulators in the production of systemic flowering signal(s) in leaves. These hormones may form part of the systemic signals in addition to the established florigen, FLOWERING LOCUS T (FT). Further, evidence is emerging that the conversion of shoot apical meristem to inflorescence meristem is linked with the interplay of auxin, cytokinin and GA creating a low cytokinin and high GA environment.
  • Item
    Thumbnail Image
    Comparative Genomic Analysis of Soybean Flowering Genes
    Jung, C-H ; Wong, CE ; Singh, MB ; Bhalla, PL ; Yin, T (PUBLIC LIBRARY SCIENCE, 2012-06-05)
    Flowering is an important agronomic trait that determines crop yield. Soybean is a major oilseed legume crop used for human and animal feed. Legumes have unique vegetative and floral complexities. Our understanding of the molecular basis of flower initiation and development in legumes is limited. Here, we address this by using a computational approach to examine flowering regulatory genes in the soybean genome in comparison to the most studied model plant, Arabidopsis. For this comparison, a genome-wide analysis of orthologue groups was performed, followed by an in silico gene expression analysis of the identified soybean flowering genes. Phylogenetic analyses of the gene families highlighted the evolutionary relationships among these candidates. Our study identified key flowering genes in soybean and indicates that the vernalisation and the ambient-temperature pathways seem to be the most variant in soybean. A comparison of the orthologue groups containing flowering genes indicated that, on average, each Arabidopsis flowering gene has 2-3 orthologous copies in soybean. Our analysis highlighted that the CDF3, VRN1, SVP, AP3 and PIF3 genes are paralogue-rich genes in soybean. Furthermore, the genome mapping of the soybean flowering genes showed that these genes are scattered randomly across the genome. A paralogue comparison indicated that the soybean genes comprising the largest orthologue group are clustered in a 1.4 Mb region on chromosome 16 of soybean. Furthermore, a comparison with the undomesticated soybean (Glycine soja) revealed that there are hundreds of SNPs that are associated with putative soybean flowering genes and that there are structural variants that may affect the genes of the light-signalling and ambient-temperature pathways in soybean. Our study provides a framework for the soybean flowering pathway and insights into the relationship and evolution of flowering genes between a short-day soybean and the long-day plant, Arabidopsis.
  • Item
    Thumbnail Image
    Border sequences of Medicago truncatula CLE36 are specifically cleaved by endoproteases common to the extracellular fluids of Medicago and soybean
    Djordjevic, MA ; Oakes, M ; Wong, CE ; Singh, M ; Bhalla, P ; Kusumawati, L ; Imin, N (OXFORD UNIV PRESS, 2011-08)
    CLE (CLAVATA3/ESR-related) peptides are developmental regulators that are secreted into the apoplast. Little is known about the role of the sequences that flank CLE peptides in terms of their biological activity or how they are targeted by proteases that are known to liberate the final active CLE peptides from their precursor sequences. The biological activity of Medicago truncatula CLE36, which possesses broadly conserved border sequences flanking the putative final active CLE36 peptide product, was assessed. Using in vitro root growth assays and an in vitro root and callus formation assay it is shown that CLE36 peptides of different lengths possess differential biological activities. Using mass spectrometry, Glycine max and Medicago extracellular fluids were each shown to possess an endoproteolytic activity that recognizes and cleaves at border sequences in a synthetic 31 amino acid CLE36 'propeptide bait' to liberate biologically active peptide products. Inhibitor studies suggest that a subtilisin, in combination with a carboxypeptidase, liberated and trimmed CLE36, respectively, to form biologically relevant 11-15 amino acid cleavage products. The 15 amino acid cleavage product is more biologically potent on Arabidopsis than shorter or longer CLE peptides. In situ hybridization shows that the soybean orthologue of CLE36 (GmCLE34) is expressed in the provascular tissue. The results suggest that secreted subtilisins can specifically recognize the border sequences of CLE36 propeptides and liberate biologically active cleavage products. These secreted proteases may affect the stability and biological activity of CLE peptides in the apoplast or be involved in CLE36 processing.
  • Item
    Thumbnail Image
    Genomic expression profiling of mature soybean (Glycine max) pollen
    Haerizadeh, F ; Wong, CE ; Bhalla, PL ; Gresshoff, PM ; Singh, MB (BMC, 2009-03-06)
    BACKGROUND: Pollen, the male partner in the reproduction of flowering plants, comprises either two or three cells at maturity. The current knowledge of the pollen transcriptome is limited to the model plant systems Arabidopsis thaliana and Oryza sativa which have tri-cellular pollen grains at maturity. Comparative studies on pollen of other genera, particularly crop plants, are needed to understand the pollen gene networks that are subject to functional and evolutionary conservation. In this study, we used the Affymetrix Soybean GeneChip to perform transcriptional profiling on mature bi-cellular soybean pollen. RESULTS: Compared to the sporophyte transcriptome, the soybean pollen transcriptome revealed a restricted and unique repertoire of genes, with a significantly greater proportion of specifically expressed genes than is found in the sporophyte tissue. Comparative analysis shows that, among the 37,500 soybean transcripts addressed in this study, 10,299 transcripts (27.46%) are expressed in pollen. Of the pollen-expressed sequences, about 9,489 (92.13%) are also expressed in sporophytic tissues, and 810 (7.87%) are selectively expressed in pollen. Overall, the soybean pollen transcriptome shows an enrichment of transcription factors (mostly zinc finger family proteins), signal recognition receptors, transporters, heat shock-related proteins and members of the ubiquitin proteasome proteolytic pathway. CONCLUSION: This is the first report of a soybean pollen transcriptional profile. These data extend our current knowledge regarding regulatory pathways that govern the gene regulation and development of pollen. A comparison between transcription factors up-regulated in soybean and those in Arabidopsis revealed some divergence in the numbers and kinds of regulatory proteins expressed in both species.
  • Item
    Thumbnail Image
    Floral initiation process at the soybean shoot apical meristem may involve multiple hormonal pathways
    Wong, CE ; Singh, MB ; Bhalla, PL (TAYLOR & FRANCIS INC, 2009)
    The transition to flowering is characterized by a shift of the shoot apical meristem (SAM) from leaf production to the initiation of a floral meristem. The flowering process is of vital importance for agriculture, but the associated events or regulatory pathways in the SAM are not well understood, especially at a system level. To address this issue, we have used a GeneChip containing 37 744 probe sets to generate a temporal profile of gene expression during the floral initiation process in the SAM of the crop legume, soybean (Glycine max). A total of 331 transcripts displayed significant changes in their expression profiles. The in silico and RT-PCR analysis on differentially regulated transcripts implies the intriguing involvement of sugar, auxin or abscisic acid (ABA) in events prior to the induction of floral homeotic transcripts. The novel involvement of ABA in the floral transition is further implicated by immunoassay, suggesting an increase in ABA levels in the SAM during this developmental transition. Furthermore, in situ localization, together with in silico data demonstrating a marked enhancement of abiotic stress-related transcripts, such as trehalose metabolism genes in SAMs, points to an overlap of abiotic stress and floral signalling pathways.
  • Item
    Thumbnail Image
    Molecular dissection of the pea shoot apical meristem
    Liang, D ; Wong, CE ; Singh, MB ; Beveridge, CA ; Phipson, B ; Smyth, GK ; Bhalla, PL (OXFORD UNIV PRESS, 2009)
    The shoot apical meristem (SAM) is responsible for the development of all the above-ground parts of a plant. Our understanding of the SAM at the molecular level is incomplete. This study investigates the gene expression repertoire of SAMs in the garden pea (Pisum sativum). To this end, 10 346 EST sequences representing 7610 unique genes were generated from SAM cDNA libraries. These sequences, together with previously reported pea ESTs, were used to construct a 12K oligonucleotide array to identify genes with differential SAM expression, as compared to axillary meristems, root apical meristems, or non-meristematic tissues. A number of genes were identified, predominantly expressed in specific cell layers or domains of the SAM and thus are likely components of the gene networks involved in stem cell maintenance or the initiation of lateral organs. Further in situ hybridization analysis confirmed the spatial localization of some of these genes within the SAM. Our data also indicate the diversification of some gene expression patterns and hence functions in legume crop plants. A number of transcripts highly expressed in all three meristems have also been uncovered and these candidates may provide valuable insight into molecular networks that underpin the maintenance of meristematic functionality.
  • Item
    Thumbnail Image
    Transcriptional profiling of the pea shoot apical meristem reveals processes underlying its function and maintenance
    Wong, CE ; Bhalla, PL ; Ottenhof, H ; Singh, MB (BMC, 2008-06-30)
    BACKGROUND: Despite the importance of the shoot apical meristem (SAM) in plant development and organ formation, our understanding of the molecular mechanisms controlling its function is limited. Genomic tools have the potential to unravel the molecular mysteries of the SAM, and legume systems are increasingly being used in plant-development studies owing to their unique characteristics such as nitrogen fixation, secondary metabolism, and pod development. Garden pea (Pisum sativum) is a well-established classic model species for genetics studies that has been used since the Mendel era. In addition, the availability of a plethora of developmental mutants makes pea an ideal crop legume for genomics studies. This study aims to utilise genomics tools in isolating genes that play potential roles in the regulation of SAM activity. RESULTS: In order to identify genes that are differentially expressed in the SAM, we generated 2735 ESTs from three cDNA libraries derived from freshly micro-dissected SAMs from 10-day-old garden peas (Pisum sativum cv Torsdag). Custom-designed oligonucleotide arrays were used to compare the transcriptional profiles of pea SAMs and non-meristematic tissues. A total of 184 and 175 transcripts were significantly up- or down-regulated in the pea SAM, respectively. As expected, close to 61% of the transcripts down-regulated in the SAM were found in the public database, whereas sequences from the same source only comprised 12% of the genes that were expressed at higher levels in the SAM. This highlights the under-representation of transcripts from the meristematic tissues in the current public pea protein database, and demonstrates the utility of our SAM EST collection as an essential genetic resource for revealing further information on the regulation of this developmental process. In addition to unknowns, many of the up-regulated transcripts are known to encode products associated with cell division and proliferation, epigenetic regulation, auxin-mediated responses and microRNA regulation. CONCLUSION: The presented data provide a picture of the transcriptional profile of the pea SAM, and reveal possible roles of differentially expressed transcripts in meristem function and maintenance.