School of Agriculture, Food and Ecosystem Sciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 18
  • Item
    Thumbnail Image
    MCRiceRepGP: a framework for the identification of genes associated with sexual reproduction in rice
    Golicz, AA ; Bhalla, PL ; Singh, MB (WILEY, 2018-10)
    Rice is an important cereal crop, being a staple food for over half of the world's population, and sexual reproduction resulting in grain formation underpins global food security. However, despite considerable research efforts, many of the genes, especially long intergenic non-coding RNA (lincRNA) genes, involved in sexual reproduction in rice remain uncharacterized. With an increasing number of public resources becoming available, information from different sources can be combined to perform gene functional annotation. We report the development of MCRiceRepGP, a machine learning framework which integrates heterogeneous evidence and employs multicriteria decision analysis and machine learning to predict coding and lincRNA genes involved in sexual reproduction in rice. The rice genome was reannotated using deep-sequencing transcriptomic data from reproduction-associated tissue/cell types identifying previously unannotated putative protein-coding genes and lincRNAs. MCRiceRepGP was used for genome-wide discovery of sexual reproduction associated coding and lincRNA genes. The protein-coding and lincRNA genes identified have distinct expression profiles, with a large proportion of lincRNAs reaching maximum expression levels in the sperm cells. Some of the genes are potentially linked to male- and female-specific fertility and heat stress tolerance during the reproductive stage. MCRiceRepGP can be used in combination with other genome-wide studies, such as genome-wide association studies, giving greater confidence that the genes identified are associated with the biological process of interest. As more data, especially about mutant plant phenotypes, become available, the power of MCRiceRepGP will grow, providing researchers with a tool to identify candidate genes for future experiments. MCRiceRepGP is available as a web application (http://mcgplannotator.com/MCRiceRepGP/).
  • Item
    Thumbnail Image
    Cytochemistry of pollen development in Brachypodium distachyon
    Sharma, A ; Singh, MB ; Bhalla, PL (SPRINGER WIEN, 2014-08)
    Brachypodium distachyon is a widely recognized model plant belonging to subfamily Pooideae with a sequenced genome. To gain a better understanding of the male reproductive development in B. distachyon we examined pollen morphology and cytochemical changes of microspore cytoplasm from pollen mother cell stage to mature pollen using light, fluorescent and scanning electron microscopy. Our results show that B. distachyon exhibits a typical monocot-type pollen ontogeny. Meiosis in the pollen mother cells is accomplished by successive cytokinesis generating isobilateral tetrads. Cytochemical examination indicated that microspore cytoplasm contains variable amounts of insoluble carbohydrates and proteins at different developmental stages. Deposition of starch in the cytoplasm of microspores starts at the bicellular stage and continues till the mature pollen stage. The formation of the exine wall progresses by the deposition of sporopollenin from the tapetum layer of the anther. The mature pollen is trinucleate, spheroidal in shape and possesses a single pore with an annulus and operculum. The exine pattern is smooth and of granular type.
  • Item
    Thumbnail Image
    Isolation and Characterization of Circadian Clock Genes in the Biofuel Plant Pongamia (Millettia pinnata)
    Winarto, HP ; Liew, LC ; Gresshoff, PM ; Scott, PT ; Singh, MB ; Bhalla, PL (SPRINGER, 2015-06)
  • Item
    Thumbnail Image
    Genomic and molecular analysis of conserved and unique features of soybean PIF4
    Arya, H ; Singh, MB ; Bhalla, PL (NATURE PORTFOLIO, 2018-08-22)
    Phytochrome-interacting factor 4 (PIF4) participates in light signaling by interacting with photoreceptors, phytochromes, and cryptochromes. Although well characterized in Arabidopsis, PIF4's role in crop plants is unknown. Here we performed the first integrated genomics, transcriptomics, and molecular characterization of PIF4 in soybean (Glycine max) plants. Fifteen identified Glycine max PIFs (GmPIFs) grouped into PIF3, PIF4, and PIF8 subfamilies based on their phylogenetic relationships. The GmPIF4 subfamily formed two distinct clades (GmPIF4 I and GmPIF4 II) with different amino acid sequences in the conserved bHLH region. Quantitative transcriptional analysis of soybean plants exposed to different photoperiods and temperatures indicated that all PIF4 I clade GmPIF4s conserved PIF4-like expression. Three out of four GmPIF4 transcripts of the GmPIF4 I clade increased at 35 °C compared to 25 °C under short day conditions. RNA sequencing of soybeans undergoing floral transition showed differential regulation of GmPIF4b, and ectopic GmPIF4b expression in wild type Arabidopsis resulted in an early flowering phenotype. Complementation of GmPIF4b in Arabidopsis pif4-101 mutants partially rescued the mutant phenotype. PIF4 protein levels peaked before dawn, and a GmPIF4b protein variant was observed in soybean plants treated at high temperatures.
  • Item
    Thumbnail Image
    Transcriptome-wide profiling and expression analysis of transcription factor families in a liverwort, Marchantia polymorpha
    Sharma, N ; Bhalla, PL ; Singh, MB (BMC, 2013-12-23)
    BACKGROUND: Transcription factors (TFs) are vital elements that regulate transcription and the spatio-temporal expression of genes, thereby ensuring the accurate development and functioning of an organism. The identification of TF-encoding genes in a liverwort, Marchantia polymorpha, offers insights into TF organization in the members of the most basal lineages of land plants (embryophytes). Therefore, a comparison of Marchantia TF genes with other land plants (monocots, dicots, bryophytes) and algae (chlorophytes, rhodophytes) provides the most comprehensive view of the rates of expansion or contraction of TF genes in plant evolution. RESULTS: In this study, we report the identification of TF-encoding transcripts in M. polymorpha for the first time, as evidenced by deep RNA sequencing data. In total, 3,471 putative TF encoding transcripts, distributed in 80 families, were identified, representing 7.4% of the generated Marchantia gametophytic transcriptome dataset. Overall, TF basic functions and distribution across families appear to be conserved when compared to other plant species. However, it is of interest to observe the genesis of novel sequences in 24 TF families and the apparent termination of 2 TF families with the emergence of Marchantia. Out of 24 TF families, 6 are known to be associated with plant reproductive development processes. We also examined the expression pattern of these TF-encoding transcripts in six male and female developmental stages in vegetative and reproductive gametophytic tissues of Marchantia. CONCLUSIONS: The analysis highlighted the importance of Marchantia, a model plant system, in an evolutionary context. The dataset generated here provides a scientific resource for TF gene discovery and other comparative evolutionary studies of land plants.
  • Item
    Thumbnail Image
    Spatial expression of CLAVATA3 in the shoot apical meristem suggests it is not a stem cell marker in soybean
    Wong, CE ; Singh, MB ; Bhalla, PL (OXFORD UNIV PRESS, 2013-12)
    CLAVATA3 (CLV3), a stem cell marker in Arabidopsis thaliana, encodes a secreted peptide that maintains the stem cell population within the shoot apical meristem. This work investigated the CLV3 orthologue in a major legume crop, soybean (GmCLV3). Instead of being expressed in the three outermost layers of the meristem as in Arabidopsis, GmCLV3 was expressed deeper in the central zone beneath the fourth layer (L4) of the meristem, overlapping with the expression of soybean WUSCHEL. Subsequent investigation using an alternative stem cell marker (GmLOG1) revealed its expression within layers L2-L4, indicating that GmCLV3 is not a stem cell marker. Overexpression studies of GmCLV3 in Arabidopsis and complementation of clv3-2 mutant suggest similar functional capacity to that of Arabidopsis CLV3. The expression of soybean CLV1, which encodes a receptor for CLV3 in Arabidopsis, was not detectable in the central zone of the meristem via reverse-transcription PCR analysis of amplified RNA from laser-microdissected samples or in situ, implicating a diverged pathway in soybean. This study also reports the novel expression of GmLOG1 in initials of axillary meristem in the boundary region between the SAM and developing leaf primordia, before the expression of GmWUS or GmCLV3, indicating cytokinin as one of the earliest signals in initiating and specifying the stem cell population.
  • Item
    Thumbnail Image
    Novel members of the AGAMOUS LIKE 6 subfamily of MIKCC-type MADS-box genes in soybean
    Wong, CE ; Singh, MB ; Bhalla, PL (BMC, 2013-07-20)
    BACKGROUND: The classical (C) MIKC-type MADS-box transcription factors comprise one gene family that plays diverse roles in the flowering process ranging from floral initiation to the development of floral organs. Despite their importance in regulating developmental processes that impact crop yield, they remain largely unexplored in the major legume oilseed crop, soybean. RESULTS: We identified 57 MIKC(c)-type transcription factors from soybean and determined the in silico gene expression profiles of the soybean MIKC(c)-type genes across different tissues. Our study implicates three MIKC(c)-type transcription factors as novel members of the AGAMOUS LIKE 6 (AGL6) subfamily of the MIKC(C)-type MADS-box genes, and we named this sister clade PsMADS3. While similar genes were identified in other legume species, poplar and grape, no such gene is represented in Arabidopsis thaliana or rice. RT-PCR analysis on these three soybean PsMADS3 genes during early floral initiation processes revealed their temporal expression similar to that of APETALA1, a gene known to function as a floral meristem identity gene. However, RNA in situ hybridisation showed that their spatial expression patterns are markedly different from those of APETALA1. CONCLUSION: Legume flower development system differs from that in the model plant, Arabidopsis. There is an overlap in the initiation of different floral whorls in soybean, and inflorescent meristems can revert to leaf production depending on the environmental conditions. MIKC(C)-type MADS-box genes have been shown to play key regulatory roles in different stages of flower development. We identified members of the PsMADS3 sub-clade in legumes that show differential spatial expression during floral initiation, indicating their potential novel roles in the floral initiation process. The results from this study will contribute to a better understanding of legume-specific floral developmental processes.
  • Item
    Thumbnail Image
    The Dynamics of Soybean Leaf and Shoot Apical Meristem Transcriptome Undergoing Floral Initiation Process
    Wong, CE ; Singh, MB ; Bhalla, PL ; Sun, M-X (PUBLIC LIBRARY SCIENCE, 2013-06-06)
    Flowering process governs seed set and thus affects agricultural productivity. Soybean, a major legume crop, requires short-day photoperiod conditions for flowering. While leaf-derived signal(s) are essential for the photoperiod-induced floral initiation process at the shoot apical meristem, molecular events associated with early floral transition stages in either leaves or shoot apical meristems are not well understood. To provide novel insights into the molecular basis of floral initiation, RNA-Seq was used to characterize the soybean transcriptome of leaf and micro-dissected shoot apical meristem at different time points after short-day treatment. Shoot apical meristem expressed a higher number of transcripts in comparison to that of leaf highlighting greater diversity and abundance of transcripts expressed in the shoot apical meristem. A total of 2951 shoot apical meristem and 13,609 leaf sequences with significant profile changes during the time course examined were identified. Most changes in mRNA level occurred after 1short-day treatment. Transcripts involved in mediating responses to stimulus including hormones or in various metabolic processes represent the top enriched GO functional category for the SAM and leaf dataset, respectively. Transcripts associated with protein degradation were also significantly changing in leaf and SAM implicating their involvement in triggering the developmental switch. RNA-Seq analysis of shoot apical meristem and leaf from soybean undergoing floral transition reveal major reprogramming events in leaves and the SAM that point toward hormones gibberellins (GA) and cytokinin as key regulators in the production of systemic flowering signal(s) in leaves. These hormones may form part of the systemic signals in addition to the established florigen, FLOWERING LOCUS T (FT). Further, evidence is emerging that the conversion of shoot apical meristem to inflorescence meristem is linked with the interplay of auxin, cytokinin and GA creating a low cytokinin and high GA environment.
  • Item
    Thumbnail Image
    Comparative Genomic Analysis of Soybean Flowering Genes
    Jung, C-H ; Wong, CE ; Singh, MB ; Bhalla, PL ; Yin, T (PUBLIC LIBRARY SCIENCE, 2012-06-05)
    Flowering is an important agronomic trait that determines crop yield. Soybean is a major oilseed legume crop used for human and animal feed. Legumes have unique vegetative and floral complexities. Our understanding of the molecular basis of flower initiation and development in legumes is limited. Here, we address this by using a computational approach to examine flowering regulatory genes in the soybean genome in comparison to the most studied model plant, Arabidopsis. For this comparison, a genome-wide analysis of orthologue groups was performed, followed by an in silico gene expression analysis of the identified soybean flowering genes. Phylogenetic analyses of the gene families highlighted the evolutionary relationships among these candidates. Our study identified key flowering genes in soybean and indicates that the vernalisation and the ambient-temperature pathways seem to be the most variant in soybean. A comparison of the orthologue groups containing flowering genes indicated that, on average, each Arabidopsis flowering gene has 2-3 orthologous copies in soybean. Our analysis highlighted that the CDF3, VRN1, SVP, AP3 and PIF3 genes are paralogue-rich genes in soybean. Furthermore, the genome mapping of the soybean flowering genes showed that these genes are scattered randomly across the genome. A paralogue comparison indicated that the soybean genes comprising the largest orthologue group are clustered in a 1.4 Mb region on chromosome 16 of soybean. Furthermore, a comparison with the undomesticated soybean (Glycine soja) revealed that there are hundreds of SNPs that are associated with putative soybean flowering genes and that there are structural variants that may affect the genes of the light-signalling and ambient-temperature pathways in soybean. Our study provides a framework for the soybean flowering pathway and insights into the relationship and evolution of flowering genes between a short-day soybean and the long-day plant, Arabidopsis.
  • Item
    Thumbnail Image
    Putative cis-regulatory elements in genes highly expressed in rice sperm cells
    Sharma, N ; Russell, SC ; Bhalla, PL ; Singh, MB (Biomed Central, 2011)
    BACKGROUND: The male germ line in flowering plants is initiated within developing pollen grains via asymmetric division. The smaller cell then becomes totally encased within a much larger vegetative cell, forming a unique "cell within a cell structure". The generative cell subsequently divides to give rise to two non-motile diminutive sperm cells, which take part in double fertilization and lead to the seed set. Sperm cells are difficult to investigate because of their presence within the confines of the larger vegetative cell. However, recently developed techniques for the isolation of rice sperm cells and the fully annotated rice genome sequence have allowed for the characterization of the transcriptional repertoire of sperm cells. Microarray gene expression data has identified a subset of rice genes that show unique or highly preferential expression in sperm cells. This information has led to the identification of cis-regulatory elements (CREs), which are conserved in sperm-expressed genes and are putatively associated with the control of cell-specific expression. FINDINGS: We aimed to identify the CREs associated with rice sperm cell-specific gene expression data using in silico prediction tools. We analyzed 1-kb upstream regions of the top 40 sperm cell co-expressed genes for over-represented conserved and novel motifs. Analysis of upstream regions with the SIGNALSCAN program with the PLACE database, MEME and the Mclip tool helped to find combinatorial sets of known transcriptional factor-binding sites along with two novel motifs putatively associated with the co-expression of sperm cell-specific genes. CONCLUSIONS: Our data shows the occurrence of novel motifs, which are putative CREs and are likely targets of transcriptional factors regulating sperm cell gene expression. These motifs can be used to design the experimental verification of regulatory elements and the identification of transcriptional factors that regulate sperm cell-specific gene expression.