School of Agriculture, Food and Ecosystem Sciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 4 of 4
  • Item
    Thumbnail Image
    Long-Term Response of Fuel to Mechanical Mastication in South-Eastern Australia
    Pickering, BJ ; Burton, JE ; Penman, TD ; Grant, MA ; Cawson, JG (MDPI, 2022-06)
    Mechanical mastication is a fuel management strategy that modifies vegetation structure to reduce the impact of wildfire. Although past research has quantified immediate changes to fuel post-mastication, few studies consider longer-term fuel trajectories and climatic drivers of this change. Our study sought to quantify changes to fuel loads and structure over time following mastication and as a function of landscape aridity. Measurements were made at 63 sites in Victoria, Australia. All sites had been masticated within the previous 9 years to remove over-abundant shrubs and small trees. We used generalised additive models to explore trends over time and along an aridity gradient. Surface fuel loads were highest immediately post-mastication and in the most arid sites. The surface fine fuel load declined over time, whereas the surface coarse fuel load remained high; these trends occurred irrespective of landscape aridity. Standing fuel (understorey and midstorey vegetation) regenerated consistently, but shrub cover was still substantially low at 9 years post-mastication. Fire managers need to consider the trade-off between a persistently higher surface coarse fuel load and reduced shrub cover to evaluate the efficacy of mastication for fuel management. Coarse fuel may increase soil heating and smoke emissions, but less shrub cover will likely moderate fire behaviour.
  • Item
    Thumbnail Image
    Mechanical Mastication Reduces Fuel Structure and Modelled Fire Behaviour in Australian Shrub Encroached Ecosystems
    Grant, MA ; Duff, TJ ; Penman, TD ; Pickering, BJ ; Cawson, JG (MDPI, 2021-06)
    Shrub encroachment of grassland and woodland ecosystems can alter wildfire behaviour and threaten ecological values. Australian fire managers are using mechanical mastication to reduce the fire risk in encroached ecosystems but are yet to evaluate its effectiveness or ecological impact. We asked: (1) How does fuel load and structure change following mastication?; (2) Is mastication likely to affect wildfire rates of spread and flame heights?; and (3) What is the impact of mastication on flora species richness and diversity? At thirteen paired sites (masticated versus control; n = 26), located in Victoria, Australia, we measured fuel properties (structure, load and hazard) and floristic diversity (richness and Shannon’s H) in 400 mP2 plots. To quantify the effects of mastication, data were analysed using parametric and non-parametric paired sample techniques. Masticated sites were grouped into two categories, 0–2 and 3–4 years post treatment. Fire behaviour was predicted using the Dry Eucalypt Forest Fire Model. Mastication with follow-up herbicide reduced the density of taller shrubs, greater than 50 cm in height, for at least 4 years. The most recently masticated sites (0–2 years) had an almost 3-fold increase in dead fine fuel loads and an 11-fold increase in dead coarse fuel loads on the forest floor compared with the controls. Higher dead coarse fuel loads were still evident after 3–4 years. Changes to fuel properties produced a reduction in predicted flame heights from 22 m to 5–6 m under severe fire weather conditions, but no change in the predicted fire rate of spread. Reductions in flame height would be beneficial for wildfire suppression and could reduce the damage to property from wildfires. Mastication did not have a meaningful effect on native species diversity, but promoted the abundance of some exotic species.
  • Item
    Thumbnail Image
    Darker, cooler, wetter: forest understories influence surface fuel moisture
    Pickering, BJ ; Duff, TJ ; Baillie, C ; Cawson, JG (Elsevier Masson, 2021-04-15)
    The moisture content of dead leaves, twigs and bark on the forest floor is a key determinant of fire behaviour. The microclimate inside forests, which drive the moisture content of these dead fuel components, is typically measured at screen height (150 cm). However, in some forest types, the surface fuel at ground level may be subject to additional sheltering from low shrubs, ferns and grasses, which could alter the microclimate near the surface (hereafter near-surface). In such cases, screen height measurements may not adequately represent the near-surface conditions that determine dead fuel moisture contents. We sought to quantify the effect of understorey vegetation on near-surface microclimate. We measured in-forest temperature, relative humidity and solar radiation in eucalypt forests over two fire seasons at both screen height and the near-surface using weather stations at 25 sites. The sites encompassed wet eucalypt forest (n=18) with a dense, mesic understorey and dry eucalypt forest (n=7) with a sparser, scleromorphic understorey. Wet forests with dense understorey vegetation had near-surface air temperatures that averaged 1.3°C lower, relative humidities that averaged 13.1% higher and total solar radiation that was 0.84 MJ less per day compared with those measured at screen height. These microclimate differences led to predicted fuel moistures which averaged 4.7% higher at the near-surface compared with screen height – this was statistically significant. In contrast, dry forests with less understorey vegetation, had near-surface air temperatures that averaged 4.2°C higher, and relative humidities that averaged 3.1% lower compared to screen height. These differences were not large enough to translate into statistically significant differences in predicted fine fuel moisture between heights. Overall, these findings show that understorey vegetation plays an important role in moderating near-surface microclimate in some forest types and this needs to be taken into consideration when predicting fuel moisture.
  • Item
    Thumbnail Image
    Plant traits linked to field-scale flammability metrics in prescribed burns in Eucalyptus forest
    Tumino, BJ ; Duff, TJ ; Goodger, JQD ; Cawson, JG ; Lázaro, A (PUBLIC LIBRARY SCIENCE, 2019-08-26)
    Vegetation is a key determinant of wildfire behaviour at field scales as it functions as fuel. Past studies in the laboratory show that plant flammability, the ability of plants to ignite and maintain combustion, is a function of their traits. However, the way the traits of individual plants combine in a vegetation community to affect field flammability has received little attention. This study aims to bridge the gap between the laboratory and field by linking plant traits to metrics of field-scale flammability. Across three prescribed burns, in Eucalyptus dominated damp and dry forest, we measured pre-burn plant species abundance and postburn field flammability metrics (percentage area burnt, char and scorch height). For understory species with dominant cover-abundance, we measured nine traits that had been demonstrated to influence flammability in the laboratory. We used fourth-corner ordination to evaluate covariation between the plant traits, species abundance and flammability. We found that several traits covaried at the species level. In some instances, these traits (e.g. specific leaf area and bulk density) could have cumulative effects on the flammability of a species while in other instances (e.g. moisture and specific leaf area) they may have counteractive effects, assuming trait effects on flammability are akin to previous research. At field scales, species with similar traits tended to co-occur, suggesting that the effects of individual traits accumulate within a plant community. Fourth-corner analyses found the traitfield flammability relationship to be statistically significant. Traits significantly associated with increasing field flammability metrics were: bulk density (negatively associated) and hydrocarbon quantity, specific leaf area and surface area to volume ratio (all positively associated). Our study demonstrates that some traits known to influence flammability in the laboratory can be associated with field-scale flammability metrics. Further research is needed to isolate the contributions of individual traits to understand how species composition drives forest flammability.