School of Agriculture, Food and Ecosystem Sciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 4 of 4
  • Item
    Thumbnail Image
    Effects of a Short-Term Supranutritional Selenium Supplementation on Redox Balance, Physiology and Insulin-Related Metabolism in Heat-Stressed Pigs
    Liu, F ; Celi, P ; Cottrell, JJ ; Chauhan, SS ; Leury, BJ ; Dunshea, FR (Wiley, 2018-02)
    Heat stress (HS) disrupts redox balance and insulin‐related metabolism. Supplementation with supranutritional amounts of selenium (Se) may enhance glutathione peroxidase (GPX) activity and reduce oxidative stress, but may trigger insulin resistance. Therefore, the aim of this experiment was to investigate the effects of a short‐term high Se supplementation on physiology, oxidative stress and insulin‐related metabolism in heat‐stressed pigs. Twenty‐four gilts were fed either a control (0.20 ppm Se) or a high Se (1.0 ppm Se yeast, HiSe) diet for 2 weeks. Pigs were then housed in thermoneutral (20°C) or HS (35°C) conditions for 8 days. Blood samples were collected to study blood Se and oxidative stress markers. An oral glucose tolerance test (OGTT) was conducted on day 8 of thermal exposure. The HS conditions increased rectal temperature and respiration rate (both p < .001). The HiSe diet increased blood Se by 12% (p < .05) and ameliorated the increase in rectal temperature (p < .05). Heat stress increased oxidative stress as evidenced by a 48% increase in plasma advanced oxidized protein products (AOPPs; p < .05), which may be associated with the reductions in plasma biological antioxidant potential (BAP) and erythrocyte GPX activity (both p < .05). The HiSe diet did not alleviate the reduction in plasma BAP or increase in AOPPs observed during HS, although it tended to increase erythrocyte GPX activity by 13% (p = .068). Without affecting insulin, HS attenuated lipid mobilization, as evidenced by a lower fasting NEFA concentration (p < .05), which was not mitigated by the HiSe diet. The HiSe diet increased insulin AUC, suggesting it potentiated insulin resistance, although this only occurred under TN conditions (p = .066). In summary, HS induced oxidative stress and attenuated lipid mobilization in pigs. The short‐term supranutritional Se supplementation alleviated hyperthermia, but did not protect against oxidative stress in heat‐stressed pigs.
  • Item
    Thumbnail Image
    Selenium and vitamin E together improve intestinal epithelial barrier function and alleviate oxidative stress in heat-stressed pigs
    Liu, F ; Cottrell, JJ ; Furness, JB ; Rivera, LR ; Kelly, FW ; Wijesiriwardana, U ; Pustovit, RV ; Fothergill, LJ ; Bravo, DM ; Celi, P ; Leury, BJ ; Gabler, NK ; Dunshea, FR (WILEY, 2016-07-01)
    What is the central question of this study? Oxidative stress may play a role in compromising intestinal epithelial barrier integrity in pigs subjected to heat stress, but it is unknown whether an increase of dietary antioxidants (selenium and vitamin E) could alleviate gut leakiness in heat-stressed pigs. What is the main finding and its importance? Levels of dietary selenium (1.0 p.p.m.) and vitamin E (200 IU kg(-1) ) greater than those usually recommended for pigs reduced intestinal leakiness caused by heat stress. This finding suggests that oxidative stress plays a role in compromising intestinal epithelial barrier integrity in heat-stressed pigs and also provides a nutritional strategy for mitigating these effects. Heat stress compromises the intestinal epithelial barrier integrity of mammals through mechanisms that may include oxidative stress. Our objective was to test whether dietary supplementation with antioxidants, selenium (Se) and vitamin E (VE), protects intestinal epithelial barrier integrity in heat-stressed pigs. Female growing pigs (n = 48) were randomly assigned to four diets containing from 0.2 p.p.m. Se and 17 IU kg(-1) VE (control, National Research Council recommended) to 1.0 p.p.m. Se and 200 IU kg(-1) VE for 14 days. Six pigs from each dietary treatment were then exposed to either thermoneutral (20°C) or heat-stress conditions (35°C 09.00-17.00 h and 28°C overnight) for 2 days. Transepithelial electrical resistance and fluorescein isothiocyanate-dextran (4 kDa; FD4) permeability were measured in isolated jejunum and ileum using Ussing chambers. Rectal temperature, respiratory rate and intestinal HSP70 mRNA abundance increased (all P < 0.001), and respiratory alkalosis occurred, suggesting that pigs were heat stressed. Heat stress also increased FD4 permeability and decreased transepithelial electrical resistance (both P < 0.01). These changes were associated with changes indicative of oxidative stress, a decreased glutathione peroxidase (GPX) activity and an increased glutathione disulfide (GSSG)-to-glutathione (GSH) ratio (both P < 0.05). With increasing dosage of Se and VE, GPX-2 mRNA (P = 0.003) and GPX activity (P = 0.049) increased linearly, the GSSG:GSH ratio decreased linearly (P = 0.037), and the impacts of heat stress on intestinal barrier function were reduced (P < 0.05 for both transepithelial electrical resistance and FD4 permeability). In conclusion, in pigs an increase of dietary Se and VE mitigated the impacts of heat stress on intestinal barrier integrity, associated with a reduction in oxidative stress.
  • Item
    Thumbnail Image
    Effects of chromium supplementation on physiology, feed intake, and insulin related metabolism in growing pigs subjected to heat stress
    Liu, F ; Cottrell, JJ ; Wijesiriwardana, U ; Kelly, FW ; Chauhan, SS ; Pustovit, RV ; Gonzales-Rivas, PA ; DiGiacomo, K ; Leury, BJ ; Celi, P ; Dunshea, FR (OXFORD UNIV PRESS INC, 2017-02)
    Improving insulin sensitivity may reduce impacts of heat stress (HS) in pigs by facilitating heat dissipation. Chromium (Cr) has been reported to improve insulin sensitivity in pigs. Therefore, the aim of this experiment was to investigate whether Cr supplementation can mitigate HS in growing pigs. Thirty-six gilts were randomly assigned to 2 diets containing 0 (control) or 400 ppb Cr. After 14 d the supplemented pigs were allocated to either 8 d thermoneutral (20°C constant; TN) or cyclic HS (35°C, 0900 h to 1700 h) conditions and continued their respective diet (n = 9 per group). Growth performance was recorded during the 14-d supplementation period. The physiological responses to HS were monitored by measuring respiration rate, rectal temperature, blood gas chemistry, and feed intake during thermal exposure. Kinetics of plasma glucose, insulin and NEFA were studied by intravenous glucose tolerance test (IVGTT) on d 8 of thermal treatment. Results showed Cr alleviated the HS-increased rectal temperature (P < 0.05) and respiration rate (P < 0.01) at 1300 h and 1600 h during thermal exposure. However, Cr did not mitigate the reduction in average daily feed intake which was reduced by 35% during HS or the HS-induced respiratory alkalosis. Chromium tended to increase average daily gain (0.86 vs. 0.95 kg, P = 0.070) during the 14-d supplementation under TN conditions before thermal exposure, which might be associated with the potential of Cr in improving overall insulin sensitivity, as evidenced by a reduced insulin resistance index calculated by Homeostatic Model Assessment (HOMA-IR; 0.65 vs. 0.51, P = 0.013) and a tendency of reduced fasting plasma insulin concentration (1.97 vs. 1.67 μU/mL, P = 0.094). Heat stress decreased the acute insulin releasing rate (P = 0.012) and consequently slowed glucose clearance rate (P = 0.035) during IVGTT. Besides, HS enlarged the values of area under the curve of NEFA during IVGTT (P < 0.01), indicating a reduced lipid mobilization. In conclusion, HS reduced insulin response to IVGTT. Chromium supplementation exhibited a potential in improving insulin sensitivity and mitigating HS symptoms in growing pigs.
  • Item
    Thumbnail Image
    A Short-Term Supranutritional Vitamin E Supplementation Alleviated Respiratory Alkalosis but Did Not Reduce Oxidative Stress in Heat Stressed Pigs
    Liu, F ; Celi, P ; Chauhan, SS ; Cottrell, JJ ; Leury, BJ ; Dunshea, FR (Asian-Australasian Association of Animal Production Societies, 2018-02)
    Objective Heat stress (HS) triggers oxidative stress and respiratory alkalosis in pigs. The objective of this experiment was to study whether a short-term supranutritional amount of dietary vitamin E (VE) can mitigate oxidative stress and respiratory alkalosis in heat-stressed pigs. Methods A total of 24 pigs were given either a control diet (17 IU/kg VE) or a high VE (200 IU/kg VE; HiVE) diet for 14 d, then exposed to thermoneutral (TN; 20°C, 45% humidity) or HS (35°C, 35% to 45% humidity, 8 h daily) conditions for 7 d. Respiration rate and rectal temperature were measured three times daily during the thermal exposure. Blood gas variables and oxidative stress markers were studied in blood samples collected on d 7. Results Although HiVE diet did not affect the elevated rectal temperature or respiration rate observed during HS, it alleviated (all p<0.05 for diet×temperature) the loss of blood CO2 partial pressure and bicarbonate, as well as the increase in blood pH in the heat-stressed pigs. The HS reduced (p = 0.003) plasma biological antioxidant potential (BAP) and tended to increase (p = 0.067) advanced oxidized protein products (AOPP) in the heat-stressed pigs, suggesting HS triggers oxidative stress. The HiVE diet did not affect plasma BAP or AOPP. Only under TN conditions the HiVE diet reduced the plasma reactive oxygen metabolites (p<0.05 for diet× temperature). Conclusion A short-term supplementation with 200 IU/kg VE partially alleviated respiratory alkalosis but did not reduce oxidative stress in heat-stressed pigs.