School of Agriculture, Food and Ecosystem Sciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 5 of 5
  • Item
    Thumbnail Image
    275 Access to Shade Mitigate Heat Stress and Improves Growth Performance in Lambs During Summer
    Joy, A ; Dunshea, FR ; Leury, BJ ; Clarke, IJ ; DiGiacomo, K ; Prathap, P ; Zhang, M ; Chauhan, SS (Oxford University Press (OUP), 2021-10-08)
    The objective of the present study was to investigate the effects of provision of shade on behavior, physiology, and growth of Merino lambs exposed to natural Australian summer conditions. Sixty Merino lambs were randomly allocated to either pasture with shade (n = 30;paddock with trees) or a pasture without shade (n = 30;paddock without any trees) for one month during southern-Australian summer (February-2021). Sheep were grazing on the pastures as per standard protocols followed on the farm with ad libitum access to water. Lambs were monitored twice daily between 0900-1000h and 1400-1600h to record their behavior, and physiological parameters were recorded on hot days (environmental temperature (T) >30°C). Behavioral patterns were represented as the proportion of animals doing specific activities in each treatment group. Grazing was the most frequent activity observed in animals during morning measurement (> 60% in both groups). However, high temperature (T > 30°C) decreased grazing behavior in sheep to < 5% in both treatments. Standing behavior was significantly greater (65.2 vs 21.6%; P < 0.05) for animals under non-shade treatment, while lying behavior was more frequent (17.3 vs 76.3%; P < 0.01) in animals having access to shade. Significantly more animals were seeking water troughs (P < 0.05) in the non-shade group (33.2%) compared to the shade group (10.3%). On an average hot day (T >28°C), most lambs in the shade group were seeking shade (P < 0.01), and when the temperature exceeded >32°C, 90% of the lambs were seeking tree shade. Sheep with access to shade exhibited lower (P < 0.01) respiration rate (117breaths/min) and rectal temperature (39.7°C) than non-shade group (151breaths/min;40.2°C). Overall, access to shade improved (P < 0.001) average daily gain (+0.047kg/day) in sheep compared to the non-shade group (-0.028kg/day). In conclusion, our research confirms that providing access to shade is an effective ameliorative strategy to mitigate heat-stress in sheep during summer heatwaves.
  • Item
    Thumbnail Image
    Glucagon-like peptide-1 control of GnRH secretion in female sheep
    Arbabi, L ; Li, Q ; Henry, BA ; Clarke, IJ (BIOSCIENTIFICA LTD, 2021-03)
    The role of glucagon-like peptide-1 (GLP-1) on gonadotropin-releasing hormone (GnRH) secretion was investigated in ovariectomised (OVX) ewes, in which GnRH and luteinising hormone (LH) secretion had been restrained by treatment with oestrogen and progesterone. Guide tubes for microinjection were placed above the median eminence (ME) and the animals were allowed to recover for 1 month. Jugular venous blood samples were taken via cannulae at 10 min intervals. Vehicle (50 nL) was injected into the ME at 2 h, followed by injection of GLP-1 ((7-36)-amide - 0.5 or 1 nmol) or its receptor agonist, exendin-4 (0.5 nmol) at 4 h (n = 5). Plasma LH levels were quantified as a surrogate measure of GnRH secretion. GLP-1 microinjection into the ME elicited a large amplitude LH pulse in jugular plasma, the effect was greater at the higher dose. Exendin-4 microinjection caused a large, sustained increase in plasma LH levels. To determine how GLP-1 might exert an effect on GnRH secretion, we employed double labelled in situ hybridisation, with RNAScope, for co-localisation of the GLP-1 receptor (GLP-1R) in GnRH, Kisspeptin and NPY cells in the hypothalami of three ewes in the luteal phase of the estrous cycle. GLP1R expression was clearly visible but the receptor was not expressed in GNRH1 or NPY expressing neurons and was visualised in <5% of KISS1 expressing neurons. We conclude that GLP-1 may act at the level of the secretory terminals of GnRH neurons in the ME to stimulate GnRH secretion, the pathway through which such effect is manifested remains unknown.
  • Item
    Thumbnail Image
    Hexapeptides from a mammalian inhibitory hormone activate and inactivate nematode reproduction
    Hart, JE ; Mohan, S ; Davies, KG ; Ferneyhough, B ; Clarke, IJ ; Hunt, JA ; Shnyder, SD ; Mundy, CR ; Howlett, DR ; Newton, RP ( 2021-09-30)
    Background: Biopurification has been used to disclose an evolutionarily conserved inhibitory reproductive hormone involved in tissue mass determination. A (rat) bioassay-guided physicochemical fractionation using ovine materials yielded via Edman degradation a 14-residue amino acid (aa) sequence. As a 14mer synthetic peptide (EPL001) this displayed antiproliferative and reproduction-modulating activity, while representing only a part of the native polypeptide. Even more unexpectedly, a scrambled-sequence control peptide (EPL030) did likewise. Methods: Reproduction has been investigated in the nematode Steinernema siamkayai, using a fermentation system supplemented with different concentrations of exogenous hexapeptides. Peptide structure-activity relationships have also been studied using prostate cancer and other mammalian cells in vitro, with peptides in solution or immobilized, and via the use of mammalian assays in vivo and through molecular modelling. Results: Reproduction increased (x3) in the entomopathogenic nematode Steinernema siamkayai after exposure to one synthetic peptide (IEPVFT), while fecundity was reduced (x0.5) after exposure to another (KLKMNG), both effects being dose-dependent. These hexamers are opposite ends of the synthetic peptide KLKMNGKNIEPVFT (EPL030). Bioactivity is unexpected as EPL030 is a control compound, based on a scrambled sequence of the test peptide MKPLTGKVKEFNNI (EPL001). EPL030 and EPL001 are both bioinformatically obscure, having no convincing matches to aa sequences in the protein databases. EPL001 has antiproliferative effects on human prostate cancer cells and rat bone marrow cells in vitro. Intracerebroventricular infusion of EPL001 in sheep was associated with elevated growth hormone in peripheral blood and reduced prolactin. The highly dissimilar EPL001 and EPL030 nonetheless have the foregoing biological effects in common in mammalian systems, while being divergently pro- and anti-fecundity respectively in the nematode Caenorhabditis elegans. Peptides up to a 20mer have also been shown to inhibit the proliferation of human cancer and other mammalian cells in vitro, with reproductive upregulation demonstrated previously in fish and frogs, as well as nematodes. EPL001 encodes the sheep neuroendocrine prohormone secretogranin II (sSgII), as deduced on the basis of immunoprecipitation using an anti-EPL001 antibody, with bespoke bioinformatics. Six sSgII residues are key to EPL001’s bioactivity : MKPLTGKVKEFNNI. A stereospecific bimodular tri-residue signature is described involving simultaneous accessibility for binding of the side chains of two specific trios of amino acids, MKP & VFN. An evolutionarily conserved receptor is conceptualised having dimeric binding sites, each with ligand-matching bimodular stereocentres. The bioactivity of the 14mer control peptide EPL030 and its hexapeptide progeny is due to the fortuitous assembly of subsets of the novel hormonal motif, MKPVFN, a default reproductive and tissue-building OFF signal.
  • Item
    Thumbnail Image
    Access to Shade Mitigate Heat Stress and Improves Growth Performance in Lambs During Summer
    Joy, A ; Dunshea, FR ; Leury, BJ ; Clarke, IJ ; DiGiacomo, K ; Prathap, P ; Zhang, M ; Chauhan, SS (American Society of Animal Science, 2021)
    The objective of the present study was to investigate the effects of provision of shade on behavior, physiology, and growth of Merino lambs exposed to natural Australian summer conditions. Sixty Merino lambs were randomly allocated to either pasture with shade (n = 30;paddock with trees) or a pasture without shade (n = 30;paddock without any trees) for one month during southern-Australian summer (February-2021). Sheep were grazing on the pastures as per standard protocols followed on the farm with ad libitum access to water. Lambs were monitored twice daily between 0900-1000h and 1400-1600h to record their behavior, and physiological parameters were recorded on hot days (environmental temperature (T) >30°C). Behavioral patterns were represented as the proportion of animals doing specific activities in each treatment group.
  • Item
    Thumbnail Image
    The melanocortin pathway and energy homeostasis: From discovery to obesity therapy
    Yeo, GSH ; Chao, DHM ; Siegert, A-M ; Koerperich, ZM ; Ericson, MD ; Simonds, SE ; Larson, CM ; Luquet, S ; Clarke, I ; Sharma, S ; Clement, K ; Cowley, MA ; Haskell-Luevano, C ; Van der Ploeg, L ; Adan, RAH (ELSEVIER, 2021-06)
    BACKGROUND: Over the past 20 years, insights from human and mouse genetics have illuminated the central role of the brain leptin-melanocortin pathway in controlling mammalian food intake, with genetic disruption resulting in extreme obesity, and more subtle polymorphic variations influencing the population distribution of body weight. At the end of 2020, the U.S. Food and Drug Administration (FDA) approved setmelanotide, a melanocortin 4 receptor agonist, for use in individuals with severe obesity due to either pro-opiomelanocortin (POMC), proprotein convertase subtilisin/kexin type 1 (PCSK1), or leptin receptor (LEPR) deficiency. SCOPE OF REVIEW: Herein, we chart the melanocortin pathway's history, explore its pharmacology, genetics, and physiology, and describe how a neuropeptidergic circuit became an important druggable obesity target. MAJOR CONCLUSIONS: Unravelling the genetics of the subset of severe obesity has revealed the importance of the melanocortin pathway in appetitive control; coupling this with studying the molecular pharmacology of compounds that bind melanocortin receptors has brought a new obesity drug to the market. This process provides a drug discovery template for complex disorders, which for setmelanotide took 25 years to transform from a single gene into an approved drug.