School of Agriculture, Food and Ecosystem Sciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 7 of 7
  • Item
    Thumbnail Image
    Can additional N fertiliser ameliorate the elevated CO2-induced depression in grain and tissue N concentrations of wheat on a high soil N background?
    Tausz, M ; Norton, RM ; Tausz-Posch, S ; Low, M ; Seneweera, S ; O'Leary, G ; Armstrong, R ; Fitzgerald, GJ (WILEY, 2017-12)
    Elevated CO₂ stimulates crop yields but leads to lower tissue and grain nitrogen concentrations [N], raising concerns about grain quality in cereals. To test whether N fertiliser application above optimum growth requirements can alleviate the decline in tissue [N], wheat was grown in a Free Air CO₂ Enrichment facility in a low‐rainfall cropping system on high soil N. Crops were grown with and without addition of 50–60 kg N/ha in 12 growing environments created by supplemental irrigation and two sowing dates over 3 years. Elevated CO₂ increased yield and biomass (on average by 25%) and decreased biomass [N] (3%–9%) and grain [N] (5%). Nitrogen uptake was greater (20%) in crops grown under elevated CO₂. Additional N supply had no effect on yield and biomass, confirming high soil N. Small increases in [N] with N addition were insufficient to offset declines in grain [N] under elevated CO₂. Instead, N application increased the [N] in straw and decreased N harvest index. The results suggest that conventional addition of N does not mitigate grain [N] depression under elevated CO₂, and lend support to hypotheses that link decreases in crop [N] with biochemical limitations rather than N supply.
  • Item
    Thumbnail Image
    Water availability moderates N2 fixation benefit from elevated [CO2]: A 2-year free-air CO2 enrichment study on lentil (Lens culinaris MEDIK.) in a water limited agroecosystem
    Parvin, S ; Uddin, S ; Bourgault, M ; Roessner, U ; Tausz-Posch, S ; Armstrong, R ; O'Leary, G ; Fitzgerald, G ; Tausz, M (WILEY, 2018-10)
    Increased biomass and yield of plants grown under elevated [CO2 ] often corresponds to decreased grain N concentration ([N]), diminishing nutritional quality of crops. Legumes through their symbiotic N2 fixation may be better able to maintain biomass [N] and grain [N] under elevated [CO2 ], provided N2 fixation is stimulated by elevated [CO2 ] in line with growth and yield. In Mediterranean-type agroecosystems, N2 fixation may be impaired by drought, and it is unclear whether elevated [CO2 ] stimulation of N2 fixation can overcome this impact in dry years. To address this question, we grew lentil under two [CO2 ] (ambient ~400 ppm and elevated ~550 ppm) levels in a free-air CO2 enrichment facility over two growing seasons sharply contrasting in rainfall. Elevated [CO2 ] stimulated N2 fixation through greater nodule number (+27%), mass (+18%), and specific fixation activity (+17%), and this stimulation was greater in the high than in the low rainfall/dry season. Elevated [CO2 ] depressed grain [N] (-4%) in the dry season. In contrast, grain [N] increased (+3%) in the high rainfall season under elevated [CO2 ], as a consequence of greater post-flowering N2 fixation. Our results suggest that the benefit for N2 fixation from elevated [CO2 ] is high as long as there is enough soil water to continue N2 fixation during grain filling.
  • Item
    Thumbnail Image
    The relationship between transpiration and nutrient uptake in wheat changes under elevated atmospheric CO2
    Houshmandfar, A ; Fitzgerald, GJ ; O'Leary, G ; Tausz-Posch, S ; Fletcher, A ; Tausz, M (WILEY, 2018-08)
    The impact of elevated [CO2 ] (e[CO2 ]) on crops often includes a decrease in their nutrient concentrations where reduced transpiration-driven mass flow of nutrients has been suggested to play a role. We used two independent approaches, a free-air CO2 enrichment (FACE) experiment in the South Eastern wheat belt of Australia and a simulation study employing the agricultural production systems simulator (APSIM), to show that transpiration (mm) and nutrient uptake (g m-2 ) of nitrogen (N), potassium (K), sulfur (S), calcium (Ca), magnesium (Mg) and manganese (Mn) in wheat are correlated under e[CO2 ], but that nutrient uptake per unit water transpired is higher under e[CO2 ] than under ambient [CO2 ] (a[CO2 ]). This result suggests that transpiration-driven mass flow of nutrients contributes to decreases in nutrient concentrations under e[CO2 ], but cannot solely explain the overall decline.
  • Item
    Thumbnail Image
    A reduced-tillering trait shows small but important yield gains in dryland wheat production
    Houshmandfar, A ; Ota, N ; O'Leary, GJ ; Zheng, B ; Chen, Y ; Tausz-Posch, S ; Fitzgerald, GJ ; Richards, R ; Rebetzke, GJ ; Tausz, M (WILEY, 2020-07)
    Reducing the number of tillers per plant using a tiller inhibition (tin) gene has been considered as an important trait for wheat production in dryland environments. We used a spatial analysis approach with a daily time-step coupled radiation and transpiration efficiency model to simulate the impact of the reduced-tillering trait on wheat yield under different climate change scenarios across Australia's arable land. Our results show a small but consistent yield advantage of the reduced-tillering trait in the most water-limited environments both under current and likely future conditions. Our climate scenarios show that whilst elevated [CO2 ] (e[CO2 ]) alone might limit the area where the reduced-tillering trait is advantageous, the most likely climate scenario of e[CO2 ] combined with increased temperature and reduced rainfall consistently increased the area where restricted tillering has an advantage. Whilst long-term average yield advantages were small (ranged from 31 to 51 kg ha-1  year-1 ), across large dryland areas the value is large (potential cost-benefits ranged from Australian dollar 23 to 60 MIL/year). It seems therefore worthwhile to further explore this reduced-tillering trait in relation to a range of different environments and climates, because its benefits are likely to grow in future dry environments where wheat is grown around the world.
  • Item
    Thumbnail Image
    Early vigour in wheat: Could it lead to more severe terminal drought stress under elevated atmospheric [CO2] and semi-arid conditions?
    Bourgault, M ; Webber, HA ; Chenu, K ; O'Leary, GJ ; Gaiser, T ; Siebert, S ; Dreccer, F ; Huth, N ; Fitzgerald, GJ ; Tausz, M ; Ewert, F (WILEY, 2020-07)
    Early vigour in wheat is a trait that has received attention for its benefits reducing evaporation from the soil surface early in the season. However, with the growth enhancement common to crops grown under elevated atmospheric CO2 concentrations (e[CO2 ]), there is a risk that too much early growth might deplete soil water and lead to more severe terminal drought stress in environments where production relies on stored soil water content. If this is the case, the incorporation of such a trait in wheat breeding programmes might have unintended negative consequences in the future, especially in dry years. We used selected data from cultivars with proven expression of high and low early vigour from the Australian Grains Free Air CO2 Enrichment (AGFACE) facility, and complemented this analysis with simulation results from two crop growth models which differ in the modelling of leaf area development and crop water use. Grain yield responses to e[CO2 ] were lower in the high early vigour group compared to the low early vigour group, and although these differences were not significant, they were corroborated by simulation model results. However, the simulated lower response with high early vigour lines was not caused by an earlier or greater depletion of soil water under e[CO2 ] and the mechanisms responsible appear to be related to an earlier saturation of the radiation intercepted. Whether this is the case in the field needs to be further investigated. In addition, there was some evidence that the timing of the drought stress during crop growth influenced the effect of e[CO2 ] regardless of the early vigour trait. There is a need for FACE investigations of the value of traits for drought adaptation to be conducted under more severe drought conditions and variable timing of drought stress, a risky but necessary endeavour.
  • Item
    Thumbnail Image
    Elevated [CO2] mitigates the effect of surface drought by stimulating root growth to access sub-soil water
    Uddin, S ; Low, M ; Parvin, S ; Fitzgerald, GJ ; Tausz-Posch, S ; Armstrong, R ; O'Leary, G ; Tausz, M ; Bond-Lamberty, B (PUBLIC LIBRARY SCIENCE, 2018-06-14)
    Through stimulation of root growth, increasing atmospheric CO2 concentration ([CO2]) may facilitate access of crops to sub-soil water, which could potentially prolong physiological activity in dryland environments, particularly because crops are more water use efficient under elevated [CO2] (e[CO2]). This study investigated the effect of drought in shallow soil versus sub-soil on agronomic and physiological responses of wheat to e[CO2] in a glasshouse experiment. Wheat (Triticum aestivum L. cv. Yitpi) was grown in split-columns with the top (0-30 cm) and bottom (31-60 cm; 'sub-soil') soil layer hydraulically separated by a wax-coated, root-penetrable layer under ambient [CO2] (a[CO2], ∼400 μmol mol-1) or e[CO2] (∼700 μmol mol-1) [CO2]. Drought was imposed from stem-elongation in either the top or bottom soil layer or both by withholding 33% of the irrigation, resulting in four water treatments (WW, WD, DW, DD; D = drought, W = well-watered, letters denote water treatment in top and bottom soil layer, respectively). Leaf gas exchange was measured weekly from stem-elongation until anthesis. Above-and belowground biomass, grain yield and yield components were evaluated at three developmental stages (stem-elongation, anthesis and maturity). Compared with a[CO2], net assimilation rate was higher and stomatal conductance was lower under e[CO2], resulting in greater intrinsic water use efficiency. Elevated [CO2] stimulated both above- and belowground biomass as well as grain yield, however, this stimulation was greater under well-watered (WW) than drought (DD) throughout the whole soil profile. Imposition of drought in either or both soil layers decreased aboveground biomass and grain yield under both [CO2] compared to the well-watered treatment. However, the greatest 'CO2 fertilisation effect' was observed when drought was imposed in the top soil layer only (DW), and this was associated with e[CO2]-stimulation of root growth especially in the well-watered bottom layer. We suggest that stimulation of belowground biomass under e[CO2] will allow better access to sub-soil water during grain filling period, when additional water is converted into additional yield with high efficiency in Mediterranean-type dryland agro-ecosystems. If sufficient water is available in the sub-soil, e[CO2] may help mitigating the effect of drying surface soil.
  • Item
    Thumbnail Image
    Effect of heat wave on N-2 fixation and N remobilisation of lentil (Lens culinaris MEDIK) grown under free air CO2 enrichment in a mediterranean-type environment
    Parvin, S ; Uddin, S ; Bourgault, M ; Delahunty, A ; Nuttall, J ; Brand, J ; O'Leary, G ; Fitzgerald, GJ ; Armstrong, R ; Tausz, M ; De Kok, LJ (Wiley, 2020-01-01)
    The stimulatory effect of elevated [CO2] (e[CO2]) on crop production in future climates is likely to be cancelled out by predicted increases in average temperatures. This effect may become stronger through more frequent and severe heat waves, which are predicted to increase in most climate change scenarios. Whilst the growth and yield response of some legumes grown under the interactive effect of e[CO2] and heat waves has been studied, little is known about how N2 fixation and overall N metabolism is affected by this combination. To address these knowledge gaps, two lentil genotypes were grown under ambient [CO2] (a[CO2], ~400 µmol·mol−1) and e[CO2] (~550 µmol·mol−1) in the Australian Grains Free Air CO2 Enrichment facility and exposed to a simulated heat wave (3‐day periods of high temperatures ~40 °C) at flat pod stage. Nodulation and concentrations of water‐soluble carbohydrates (WSC), total free amino acids, N and N2 fixation were assessed following the imposition of the heat wave until crop maturity. Elevated [CO2] stimulated N2 fixation so that total N2 fixation in e[CO2]‐grown plants was always higher than in a[CO2], non‐stressed control plants. Heat wave triggered a significant decrease in active nodules and WSC concentrations, but e[CO2] had the opposite effect. Leaf N remobilization and grain N improved under interaction of e[CO2] and heat wave. These results suggested that larger WSC pools and nodulation under e[CO2] can support post‐heat wave recovery of N2 fixation. Elevated [CO2]‐induced accelerated leaf N remobilisation might contribute to restore grain N concentration following a heat wave.