School of Agriculture, Food and Ecosystem Sciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 30
  • Item
    No Preview Available
    Virtual reality environments on the sensory acceptability and emotional responses of no- and full-sugar chocolate
    Torrico, DD ; Sharma, C ; Dong, W ; Fuentes, S ; Viejo, CG ; Dunshea, FR (ELSEVIER, 2021-02)
  • Item
    Thumbnail Image
    Biometric Physiological Responses from Dairy Cows Measured by Visible Remote Sensing Are Good Predictors of Milk Productivity and Quality through Artificial Intelligence
    Fuentes, S ; Gonzalez Viejo, C ; Tongson, E ; Lipovetzky, N ; Dunshea, FR (MDPI, 2021-10)
    New and emerging technologies, especially those based on non-invasive video and thermal infrared cameras, can be readily tested on robotic milking facilities. In this research, implemented non-invasive computer vision methods to estimate cow's heart rate, respiration rate, and abrupt movements captured using RGB cameras and machine learning modelling to predict eye temperature, milk production and quality are presented. RGB and infrared thermal videos (IRTV) were acquired from cows using a robotic milking facility. Results from 102 different cows with replicates (n = 150) showed that an artificial neural network (ANN) model using only inputs from RGB cameras presented high accuracy (R = 0.96) in predicting eye temperature (°C), using IRTV as ground truth, daily milk productivity (kg-milk-day-1), cow milk productivity (kg-milk-cow-1), milk fat (%) and milk protein (%) with no signs of overfitting. The ANN model developed was deployed using an independent 132 cow samples obtained on different days, which also rendered high accuracy and was similar to the model development (R = 0.93). This model can be easily applied using affordable RGB camera systems to obtain all the proposed targets, including eye temperature, which can also be used to model animal welfare and biotic/abiotic stress. Furthermore, these models can be readily deployed in conventional dairy farms.
  • Item
    Thumbnail Image
    Berry Cell Vitality Assessment and the Effect on Wine Sensory Traits Based on Chemical Fingerprinting, Canopy Architecture and Machine Learning Modelling
    Fuentes, S ; Gonzalez Viejo, C ; Hall, C ; Tang, Y ; Tongson, E (MDPI, 2021-11)
    Berry cell death assessment can become one of the most objective parameters to assess important berry quality traits, such as aroma profiles that can be passed to the wine in the winemaking process. At the moment, the only practical tool to assess berry cell death in the field is using portable near-infrared spectroscopy (NIR) and machine learning (ML) models. This research tested the NIR and ML approach and developed supervised regression ML models using Shiraz and Chardonnay berries and wines from a vineyard located in Yarra Valley, Victoria, Australia. An ML model was developed using NIR measurements from intact berries as inputs to estimate berry cell death (BCD), living tissue (LT) (Model 1). Furthermore, canopy architecture parameters obtained from cover photography of grapevine canopies and computer vision analysis were also tested as inputs to develop ML models to assess BCD and LT (Model 2) and the intensity of sensory descriptors based on visual and aroma profiles of wines for Chardonnay (Model 3) and Shiraz (Model 4). The results showed high accuracy and performance of models developed based on correlation coefficient (R) and slope (b) (M1: R = 0.87; b = 0.82; M2: R = 0.98; b = 0.93; M3: R = 0.99; b = 0.99; M4: R = 0.99; b = 1.00). Models developed based on canopy architecture, and computer vision can be used to automatically estimate the vigor and berry and wine quality traits using proximal remote sensing and with visible cameras as the payload of unmanned aerial vehicles (UAV).
  • Item
    Thumbnail Image
    Digital Integration and Automated Assessment of Eye-Tracking and Emotional Response Data Using the BioSensory App to Maximize Packaging Label Analysis
    Fuentes, S ; Gonzalez Viejo, C ; Torrico, DD ; Dunshea, FR (MDPI, 2021-11)
    New and emerging non-invasive digital tools, such as eye-tracking, facial expression and physiological biometrics, have been implemented to extract more objective sensory responses by panelists from packaging and, specifically, labels. However, integrating these technologies from different company providers and software for data acquisition and analysis makes their practical application difficult for research and the industry. This study proposed a prototype integration between eye tracking and emotional biometrics using the BioSensory computer application for three sample labels: Stevia, Potato chips, and Spaghetti. Multivariate data analyses are presented, showing the integrative analysis approach of the proposed prototype system. Further studies can be conducted with this system and integrating other biometrics available, such as physiological response with heart rate, blood, pressure, and temperature changes analyzed while focusing on different label components or packaging features. By maximizing data extraction from various components of packaging and labels, smart predictive systems can also be implemented, such as machine learning to assess liking and other parameters of interest from the whole package and specific components.
  • Item
    Thumbnail Image
    Computer Vision and Machine Learning Analysis of Commercial Rice Grains: A Potential Digital Approach for Consumer Perception Studies
    Aznan, A ; Viejo, CG ; Pang, A ; Fuentes, S (MDPI, 2021-10)
    Rice quality assessment is essential for meeting high-quality standards and consumer demands. However, challenges remain in developing cost-effective and rapid techniques to assess commercial rice grain quality traits. This paper presents the application of computer vision (CV) and machine learning (ML) to classify commercial rice samples based on dimensionless morphometric parameters and color parameters extracted using CV algorithms from digital images obtained from a smartphone camera. The artificial neural network (ANN) model was developed using nine morpho-colorimetric parameters to classify rice samples into 15 commercial rice types. Furthermore, the ANN models were deployed and evaluated on a different imaging system to simulate their practical applications under different conditions. Results showed that the best classification accuracy was obtained using the Bayesian Regularization (BR) algorithm of the ANN with ten hidden neurons at 91.6% (MSE = <0.01) and 88.5% (MSE = 0.01) for the training and testing stages, respectively, with an overall accuracy of 90.7% (Model 2). Deployment also showed high accuracy (93.9%) in the classification of the rice samples. The adoption by the industry of rapid, reliable, and accurate methods, such as those presented here, may allow the incorporation of different morpho-colorimetric traits in rice with consumer perception studies.
  • Item
    Thumbnail Image
    Digital Smoke Taint Detection in Pinot Grigio Wines Using an E-Nose and Machine Learning Algorithms Following Treatment with Activated Carbon and a Cleaving Enzyme
    Summerson, V ; Viejo, CG ; Torrico, DD ; Pang, A ; Fuentes, S (MDPI, 2021-09)
    The incidence and intensity of bushfires is increasing due to climate change, resulting in a greater risk of smoke taint development in wine. In this study, smoke-tainted and non-smoke-tainted wines were subjected to treatments using activated carbon with/without the addition of a cleaving enzyme treatment to hydrolyze glycoconjugates. Chemical measurements and volatile aroma compounds were assessed for each treatment, with the two smoke taint amelioration treatments exhibiting lower mean values for volatile aroma compounds exhibiting positive ‘fruit’ aromas. Furthermore, a low-cost electronic nose (e-nose) was used to assess the wines. A machine learning model based on artificial neural networks (ANN) was developed using the e-nose outputs from the unsmoked control wine, unsmoked wine with activated carbon treatment, unsmoked wine with a cleaving enzyme plus activated carbon treatment, and smoke-tainted control wine samples as inputs to classify the wines according to the smoke taint amelioration treatment. The model displayed a high overall accuracy of 98% in classifying the e-nose readings, illustrating it may be a rapid, cost-effective tool for winemakers to assess the effectiveness of smoke taint amelioration treatment by activated carbon with/without the use of a cleaving enzyme. Furthermore, the use of a cleaving enzyme coupled with activated carbon was found to be effective in ameliorating smoke taint in wine and may help delay the resurgence of smoke aromas in wine following the aging and hydrolysis of glycoconjugates.
  • Item
    Thumbnail Image
    Smart Detection of Faults in Beers Using Near-Infrared Spectroscopy, a Low-Cost Electronic Nose and Artificial Intelligence
    Gonzalez Viejo, C ; Fuentes, S ; Hernandez-Brenes, C (MDPI, 2021-09)
    Early detection of beer faults is an important assessment in the brewing process to secure a high-quality product and consumer acceptability. This study proposed an integrated AI system for smart detection of beer faults based on the comparison of near-infrared spectroscopy (NIR) and a newly developed electronic nose (e-nose) using machine learning modelling. For these purposes, a commercial larger beer was used as a base prototype, which was spiked with 18 common beer faults plus the control aroma. The 19 aroma profiles were used as targets for classification ma-chine learning (ML) modelling. Six different ML models were developed; Model 1 (M1) and M2 were developed using the NIR absorbance values (100 inputs from 1596–2396 nm) and e-nose (nine sensor readings) as inputs, respectively, to classify the samples into control, low and high concentration of faults. Model 3 (M3) and M4 were based on NIR and M5 and M6 based on the e-nose readings as inputs with 19 aroma profiles as targets for all models. A customized code tested 17 artificial neural network (ANN) algorithms automatically testing performance and neu-ron trimming. Results showed that the Bayesian regularization algorithm was the most adequate for classification rendering precisions of M1 = 95.6%, M2 = 95.3%, M3 = 98.9%, M4 = 98.3%, M5 = 96.8%, and M6 = 96.2% without statistical signs of under- or overfitting. The proposed system can be added to robotic pourers and the brewing process at low cost, which can benefit craft and larger brewing companies.
  • Item
    Thumbnail Image
    Early Detection of Aphid Infestation and Insect-Plant Interaction Assessment in Wheat Using a Low-Cost Electronic Nose (E-Nose), Near-Infrared Spectroscopy and Machine Learning Modeling
    Fuentes, S ; Tongson, E ; Unnithan, RR ; Viejo, CG (MDPI, 2021-09)
    Advances in early insect detection have been reported using digital technologies through camera systems, sensor networks, and remote sensing coupled with machine learning (ML) modeling. However, up to date, there is no cost-effective system to monitor insect presence accurately and insect-plant interactions. This paper presents results on the implementation of near-infrared spectroscopy (NIR) and a low-cost electronic nose (e-nose) coupled with machine learning. Several artificial neural network (ANN) models were developed based on classification to detect the level of infestation and regression to predict insect numbers for both e-nose and NIR inputs, and plant physiological response based on e-nose to predict photosynthesis rate (A), transpiration (E) and stomatal conductance (gs). Results showed high accuracy for classification models ranging within 96.5-99.3% for NIR and between 94.2-99.2% using e-nose data as inputs. For regression models, high correlation coefficients were obtained for physiological parameters (gs, E and A) using e-nose data from all samples as inputs (R = 0.86) and R = 0.94 considering only control plants (no insect presence). Finally, R = 0.97 for NIR and R = 0.99 for e-nose data as inputs were obtained to predict number of insects. Performances for all models developed showed no signs of overfitting. In this paper, a field-based system using unmanned aerial vehicles with the e-nose as payload was proposed and described for deployment of ML models to aid growers in pest management practices.
  • Item
    Thumbnail Image
    Assessment of Volatile Aromatic Compounds in Smoke Tainted Cabernet Sauvignon Wines Using a Low-Cost E-Nose and Machine Learning Modelling
    Summerson, V ; Gonzalez Viejo, C ; Pang, A ; Torrico, DD ; Fuentes, S (MDPI, 2021-08)
    Wine aroma is an important quality trait in wine, influenced by its volatile compounds. Many factors can affect the composition and levels (concentration) of volatile aromatic compounds, including the water status of grapevines, canopy management, and the effects of climate change, such as increases in ambient temperature and drought. In this study, a low-cost and portable electronic nose (e-nose) was used to assess wines produced from grapevines exposed to different levels of smoke contamination. Readings from the e-nose were then used as inputs to develop two machine learning models based on artificial neural networks. Results showed that regression Model 1 displayed high accuracy in predicting the levels of volatile aromatic compounds in wine (R = 0.99). On the other hand, Model 2 also had high accuracy in predicting smoke aroma intensity from sensory evaluation (R = 0.97). Descriptive sensory analysis showed high levels of smoke taint aromas in the high-density smoke-exposed wine sample (HS), followed by the high-density smoke exposure with in-canopy misting treatment (HSM). Principal component analysis further showed that the HS treatment was associated with smoke aroma intensity, while results from the matrix showed significant negative correlations (p < 0.05) were observed between ammonia gas (sensor MQ137) and the volatile aromatic compounds octanoic acid, ethyl ester (r = -0.93), decanoic acid, ethyl ester (r = -0.94), and octanoic acid, 3-methylbutyl ester (r = -0.89). The two models developed in this study may offer winemakers a rapid, cost-effective, and non-destructive tool for assessing levels of volatile aromatic compounds and the aroma qualities of wine for decision making.
  • Item
    Thumbnail Image
    The post-translational modification landscape of commercial beers
    Kerr, ED ; Caboche, CH ; Pegg, CL ; Phung, TK ; Viejo, CG ; Fuentes, S ; Howes, MT ; Howell, K ; Schulz, BL (NATURE PORTFOLIO, 2021-08-05)
    Beer is one of the most popular beverages worldwide. As a product of variable agricultural ingredients and processes, beer has high molecular complexity. We used DIA/SWATH-MS to investigate the proteomic complexity and diversity of 23 commercial Australian beers. While the overall complexity of the beer proteome was modest, with contributions from barley and yeast proteins, we uncovered a very high diversity of post-translational modifications (PTMs), especially proteolysis, glycation, and glycosylation. Proteolysis was widespread throughout barley proteins, but showed clear site-specificity. Oligohexose modifications were common on lysines in barley proteins, consistent with glycation by maltooligosaccharides released from starch during malting or mashing. O-glycosylation consistent with oligomannose was abundant on secreted yeast glycoproteins. We developed and used data analysis pipelines to efficiently extract and quantify site-specific PTMs from SWATH-MS data, and showed incorporating these features into proteomic analyses extended analytical precision. We found that the key differentiator of the beer glyco/proteome was the brewery, with beer from independent breweries having a distinct profile to beer from multinational breweries. Within a given brewery, beer styles also had distinct glyco/proteomes. Targeting our analyses to beers from a single brewery, Newstead Brewing Co., allowed us to identify beer style-specific features of the glyco/proteome. Specifically, we found that proteins in darker beers tended to have low glycation and high proteolysis. Finally, we objectively quantified features of foam formation and stability, and showed that these quality properties correlated with the concentration of abundant surface-active proteins from barley and yeast.