School of Agriculture, Food and Ecosystem Sciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 35
  • Item
    No Preview Available
    Fibre fermentation and pig faecal microbiota composition are affected by the interaction between sugarcane fibre and (poly)phenols in vitro
    Loo, YT ; Howell, K ; Suleria, H ; Zhang, P ; Liu, S ; Ng, K (TAYLOR & FRANCIS LTD, 2023-02-17)
    We investigated the effects of (poly)phenol-rich sugarcane extract (PRSE), sugarcane fibre (SCFiber), and the combination of them (PRSE + SCFiber) on the gut microbiota and short-chain fatty acids (SCFA) production using in vitro digestion and pig faecal fermentation. Measuring total phenolic content and antioxidant activity through the in vitro digestion stages showed that PRSE + SCFiber increased the delivery of (poly)phenols to the in vitro colonic fermentation stage compared to PRSE alone. The PRSE + SCFiber modulated the faecal microbiota profile by enhancing the relative abundances of Prevotella, Lactobacillus, and Blautia, and reducing the relative abundance of Streptococcus. PRSE + SCFiber also mitigated the inhibitory effects of PRSE on SCFA production. These results suggest that the inclusion of sugarcane fibre with PRSE could increase the availability of phenolic compounds in the colon and modulate the gut microbiota towards a more favourable profile.
  • Item
    Thumbnail Image
    Activity and bioavailability of food protein-derived angiotensin-I-converting enzyme-inhibitory peptides
    Xue, L ; Yin, R ; Howell, K ; Zhang, P (WILEY, 2021-03)
    Angiotensin-I-converting enzyme (ACE) inhibitory peptides are able to inhibit the activity of ACE, which is the key enzymatic factor mediating systemic hypertension. ACE-inhibitory peptides can be obtained from edible proteins and have the function of antihypertension. The amino acid sequences and the secondary structures of ACE-inhibitory peptides determine the inhibitory activities and stability. The resistance of ACE-inhibitory peptides to digestive enzymes and peptidase affect their antihypertensive bioactivity in vivo. In this paper, the mechanism of ACE-inhibition, sources of the inhibitory peptides, structure-activity relationships, stability during digestion, absorption and transportation of ACE-inhibitory peptides, and consumption of ACE-inhibitory peptides are reviewed, which provide guidance to the development of new functional foods and production of antihypertensive nutraceuticals and pharmaceuticals.
  • Item
    Thumbnail Image
    The salivary microbiome shows a high prevalence of core bacterial members yet variability across human populations
    Ruan, X ; Luo, J ; Zhang, P ; Howell, K (NATURE PORTFOLIO, 2022-10-20)
    Human saliva contains diverse bacterial communities, reflecting health status, dietary patterns and contributing to variability in the sensory perception of food. Many descriptions of the diversity of the salivary microbiome have focused on the changes induced by certain diseased states, but the commonalities and differences within healthy saliva have not been fully described. Here, we define and explore the core membership of the human salivary microbial community by collecting and re-analysing raw 16S rRNA amplicon sequencing data from 47 studies with 2206 saliva samples. We found 68 core bacterial taxa that were consistently detected. Differences induced by various host intrinsic and behaviour factors, including gender, age, geographic location, tobacco usage and alcohol consumption were evident. The core of the salivary microbiome was verified by collecting and analysing saliva in an independent study. These results suggest that the methods used can effectively define a core microbial community in human saliva. The core salivary microbiome demonstrated both stability and variability among populations. Geographic location was identified as the host factor that is most associated with the structure of salivary microbiota. The independent analysis confirmed the prevalence of the 68 core OTUs we defined from the global data and provides information about how bacterial taxa in saliva varies across human populations.
  • Item
    No Preview Available
    Flavones interact with fiber to affect fecal bacterial communities in vitro
    Loo, YT ; Howell, K ; Suleria, H ; Zhang, P ; Liu, S ; Ng, K (ELSEVIER SCI LTD, 2023-03-15)
    This study investigated the effects of the sugarcane flavones diosmin, diosmetin, luteolin, and tricin, and their interactions with sugarcane fiber on the modulation of gut microbiota using in vitro batch fermentation. The alteration of fecal fermentation bacterial profile was analyzed using 16S rRNA sequencing data, while the bioavailability of fiber was indicated by short-chain fatty acid (SCFA) production and metabolism of polyphenols was measured directly by phenolic metabolites. Application of diosmin, diosmetin, luteolin, and tricin without fiber had no significant effect on the overall microbiota profile after 24 h of fermentation. When fiber alone was added, total SCFA production increased, specifically that of propionic and valeric acids. However, when flavones were combined with fiber, synergistic effects on the modulation of relative abundances of different bacterial taxa was noted. In particular, the proportion of Prevotella spp. was significantly increased by the combinations of diosmin, luteolin, and tricin with fiber.
  • Item
    Thumbnail Image
    Saccharomyces cerevisiae does not undergo a quorum sensing-dependent switch of budding pattern
    Winters, M ; Aru, V ; Howell, K ; Arneborg, N (NATURE PORTFOLIO, 2022-05-24)
    Saccharomyces cerevisiae can alter its morphology to a filamentous form associated with unipolar budding in response to environmental stressors. Induction of filamentous growth is suggested under nitrogen deficiency in response to alcoholic signalling molecules through quorum sensing. To investigate this further, we analysed the budding pattern of S. cerevisiae cells over time under low nitrogen conditions while concurrently measuring cell density and extracellular metabolite concentration. We found that the proportion of cells displaying unipolar budding increased between local cell densities of 4.8 × 106 and 5.3 × 107 cells/ml. This increase in unipolar budding was not reproduced with cells growing at the critical cell density and in conditioned media. Growth under high nitrogen conditions also resulted in increased unipolar budding between local cell densities of 5.2 × 106 and 8.2 × 107 cells/ml, but with differences in metabolite concentration compared to low nitrogen conditions. Neither cell density, metabolite concentration, nor nitrogen deficiency were therefore sufficient to increase unipolar budding. Therefore, by using the budding pattern as an early indicator of filamentous growth, our results suggest that quorum sensing may not control the switch of budding behaviour in S. cerevisiae. Only a high concentration of the putative signalling molecule, 2-phenylethanol, resulted in an increase in unipolar budding. However, this concentration was not physiologically relevant, suggesting toxicity rather than a known quorum sensing mechanism.
  • Item
    No Preview Available
    Reliable budding pattern classification of yeast cells with time-resolved measurement of metabolite production
    Winters, M ; Aru, V ; Howell, K ; Arneborg, N (FUTURE SCI LTD, 2022-01)
    Filamentous growth in Saccharomyces cerevisiae is a stress response commonly induced under nutrient deprivation and by certain alcohols. It is a compound phenotype characterized by pseudohyphal growth, invasion and a shift to more polarized budding. Previous methods have not allowed the time-resolved determination of filamentous growth. Here we present a new method for budding pattern characterization that enables the measurement of filamentous growth and metabolite concentration during yeast cell growth at precise time intervals. By combining chemical cell immobilization and single-cell imaging using an oCelloScope™, this method provides more accurate budding pattern classification compared with previous methods. The applications of the method include, for example, investigation of quorum sensing-controlled yeast filamentous growth and metabolism under stress and identification of toxic metabolites.
  • Item
    Thumbnail Image
    Microorganisms in Whole Botanical Fermented Foods Survive Processing and Simulated Digestion to Affect Gut Microbiota Composition
    Chan, M ; Liu, D ; Wu, Y ; Yang, F ; Howell, K (Frontiers Media, 2021)
    Botanical fermented foods have been shown to improve human health, based on the activity of potentially beneficial lactic acid bacteria (LAB) and yeasts and their metabolic outputs. However, few studies have explored the effects of prolonged storage and functional spices on microbial viability of whole fermented foods from fermentation to digestion. Even fewer have assessed their impact on the gut microbiota. Our study investigated the effects of production processes on LAB and yeast microbial viability and gut microbiota composition. We achieved this by using physicochemical assessments and an in vitro gastrointestinal and a porcine gut microbiota model. In low-salt sauerkraut, we assessed the effects of salt concentration, starter cultures, and prolonged storage, and in tibicos, prolonged storage and the addition of spices cayenne, ginger, and turmeric. In both food matrices, LAB counts significantly increased (p<0.05), reaching a peak of 7–8 log cfu/g, declining to 6–6.5 log cfu/g by day 96. Yeast viability remained at 5–6 log cfu/g in tibicos. Ginger tibicos had significantly increased LAB and yeast viability during fermentation and storage (p<0.05). For maximum microbial consumption, tibicos should be consumed within 28days, and sauerkraut, 7weeks. Simulated upper GI digestion of both products resulted in high microbial survival rates of 70–80%. The 82% microbial survival rate of cayenne tibicos was significantly higher than other treatments (p<0.05). 16S rRNA sequencing of simulated porcine colonic microbiota showed that both spontaneously fermented sauerkraut and tibicos increase the relative abundance of Megasphaera 85-fold. These findings will inform researchers, producers, and consumers about the factors that affect the microbial content of fermented foods, and their potential effects on the gut.
  • Item
    Thumbnail Image
    Is advancement of grapevine maturity explained by an increase in the rate of ripening or advancement of veraison?
    Cameron, W ; Petrie, PR ; Barlow, EWR ; Patrick, CJ ; Howell, K ; Fuentes, S (WILEY, 2021-07)
  • Item
    Thumbnail Image
    Influence of bacteria on the maintenance of a yeast during Drosophila melanogaster metamorphosis
    Guilhot, R ; Rombaut, A ; Xuereb, A ; Howell, K ; Fellous, S (BMC, 2021-10-03)
    Interactions between microorganisms associated with metazoan hosts are emerging as key features of symbiotic systems. Little is known about the role of such interactions on the maintenance of host-microorganism association throughout the host's life cycle. We studied the influence of extracellular bacteria on the maintenance of a wild isolate of the yeast Saccharomyces cerevisiae through metamorphosis of the fly Drosophila melanogaster reared in fruit. Yeasts maintained through metamorphosis only when larvae were associated with extracellular bacteria isolated from D. melanogaster faeces. One of these isolates, an Enterobacteriaceae, favoured yeast maintenance during metamorphosis. Such bacterial influence on host-yeast association may have consequences for the ecology and evolution of insect-yeast-bacteria symbioses in the wild.
  • Item