School of Agriculture, Food and Ecosystem Sciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 8 of 8
  • Item
    Thumbnail Image
    Coupling of soil prokaryotic diversity and plant diversity across latitudinal forest ecosystems
    Wang, J-T ; Zheng, Y-M ; Hu, H-W ; Li, J ; Zhang, L-M ; Chen, B-D ; Chen, W-P ; He, J-Z (NATURE PORTFOLIO, 2016-01-19)
    The belowground soil prokaryotic community plays a cardinal role in sustaining the stability and functions of forest ecosystems. Yet, the nature of how soil prokaryotic diversity co-varies with aboveground plant diversity along a latitudinal gradient remains elusive. By establishing three hundred 400-m(2) quadrats from tropical rainforest to boreal forest in a large-scale parallel study on both belowground soil prokaryote and aboveground tree and herb communities, we found that soil prokaryotic diversity couples with the diversity of herbs rather than trees. The diversity of prokaryotes and herbs responds similarly to environmental factors along the latitudinal gradient. These findings revealed that herbs provide a good predictor of belowground biodiversity in forest ecosystems, and provide new perspective on the aboveground and belowground interactions in forest ecosystems.
  • Item
    Thumbnail Image
    Primary Succession of Nitrogen Cycling Microbial Communities Along the Deglaciated Forelands of Tianshan Mountain, China
    Zeng, J ; Lou, K ; Zhang, C-J ; Wang, J-T ; Hu, H-W ; Shen, J-P ; Zhang, L-M ; Han, L-L ; Zhang, T ; Lin, Q ; Chalk, PM ; He, J-Z (FRONTIERS MEDIA SA, 2016-08-30)
    Structural succession and its driving factors for nitrogen (N) cycling microbial communities during the early stages of soil development (0-44 years) were studied along a chronosequence in the glacial forelands of the Tianshan Mountain No.1 glacier in the arid and semi-arid region of central Asia. We assessed the abundance and population of functional genes affiliated with N-fixation (nifH), nitrification (bacterial and archaeal amoA), and denitrification (nirK/S and nosZ) in a glacier foreland using molecular methods. The abundance of functional genes significantly increased with soil development. N cycling community compositions were also significantly shifted within 44 years and were structured by successional age. Cyanobacterial nifH gene sequences were the most dominant N fixing bacteria and its relative abundance increased from 56.8-93.2% along the chronosequence. Ammonia-oxidizing communities shifted from the Nitrososphaera cluster (AOA-amoA) and the Nitrosospira cluster ME (AOB-aomA) in younger soils (0 and 5 years) to communities dominated by soil and sediment 1 (AOA-amoA) and Nitrosospira Cluster 2 Related (AOB-aomA) in older soils (≥17 years). Most of the denitrifers closest relatives were potential aerobic denitrifying bacteria, and some other types of denitrifying bacteria (like autotrophic nitrate-reducing, sulfide-oxidizing bacteria and denitrifying phosphorus removing bacteria) were also detected in all soil samples. The regression analysis showed that N cycling microbial communities were dominant in younger soils (0-5 years) and significantly correlated with soil total carbon, while communities that were most abundant in older soils were significantly correlated with soil total nitrogen. These results suggested that the shift of soil C and N contents during the glacial retreat significantly influenced the abundance, composition and diversity of N cycling microbial communities.
  • Item
    Thumbnail Image
    Nitrification Is a Primary Driver of Nitrous Oxide Production in Laboratory Microcosms from Different Land-Use Soils
    Liu, R ; Hu, H ; Suter, H ; Hayden, HL ; He, J ; Mele, P ; Chen, D (FRONTIERS MEDIA SA, 2016-09-09)
    Most studies on soil N2O emissions have focused either on the quantifying of agricultural N2O fluxes or on the effect of environmental factors on N2O emissions. However, very limited information is available on how land-use will affect N2O production, and nitrifiers involved in N2O emissions in agricultural soil ecosystems. Therefore, this study aimed at evaluating the relative importance of nitrification and denitrification to N2O emissions from different land-use soils and identifying the potential underlying microbial mechanisms. A (15)N-tracing experiment was conducted under controlled laboratory conditions on four agricultural soils collected from different land-use. We measured N2O fluxes, nitrate ([Formula: see text]), and ammonium ([Formula: see text]) concentration and (15)N2O, (15)[Formula: see text], and (15)[Formula: see text] enrichment during the incubation. Quantitative PCR was used to quantify ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB). Our results showed that nitrification was the main contributor to N2O production in soils from sugarcane, dairy pasture and cereal cropping systems, while denitrification played a major role in N2O production in the vegetable soil under the experimental conditions. Nitrification contributed to 96.7% of the N2O emissions in sugarcane soil followed by 71.3% in the cereal cropping soil and 70.9% in the dairy pasture soil, while only around 20.0% of N2O was produced from nitrification in vegetable soil. The proportion of nitrified nitrogen as N2O (PN2O-value) varied across different soils, with the highest PN2O-value (0.26‰) found in the cereal cropping soil, which was around 10 times higher than that in other three systems. AOA were the abundant ammonia oxidizers, and were significantly correlated to N2O emitted from nitrification in the sugarcane soil, while AOB were significantly correlated with N2O emitted from nitrification in the cereal cropping soil. Our findings suggested that soil type and land-use might have strongly affected the relative contribution of nitrification and denitrification to N2O production from agricultural soils.
  • Item
    Thumbnail Image
    Impacts of reclaimed water irrigation on soil antibiotic resistome in urban parks of Victoria, Australia
    Han, X-M ; Hu, H-W ; Shi, X-Z ; Wang, J-T ; Han, L-L ; Chen, D ; He, J-Z (ELSEVIER SCI LTD, 2016-04)
    UNLABELLED: The effluents from wastewater treatment plants have been recognized as a significant environmental reservoir of antibiotics and antibiotic resistance genes (ARGs). Reclaimed water irrigation (RWI) is increasingly used as a practical solution for combating water scarcity in arid and semiarid regions, however, impacts of RWI on the patterns of ARGs and the soil bacterial community remain unclear. Here, we used high-throughput quantitative PCR and terminal restriction fragment length polymorphism techniques to compare the diversity, abundance and composition of a broad-spectrum of ARGs and total bacteria in 12 urban parks with and without RWI in Victoria, Australia. A total of 40 unique ARGs were detected across all park soils, with genes conferring resistance to β-lactam being the most prevalent ARG type. The total numbers and the fold changes of the detected ARGs were significantly increased by RWI, and marked shifts in ARG patterns were also observed in urban parks with RWI compared to those without RWI. The changes in ARG patterns were paralleled by a significant effect of RWI on the bacterial community structure and a co-occurrence pattern of the detected ARG types. There were significant and positive correlations between the fold changes of the integrase intI1 gene and two β-lactam resistance genes (KPC and IMP-2 groups), but no significant impacts of RWI on the abundances of intI1 and the transposase tnpA gene were found, indicating that RWI did not improve the potential for horizontal gene transfer of soil ARGs. Taken together, our findings suggested that irrigation of urban parks with reclaimed water could influence the abundance, diversity, and compositions of a wide variety of soil ARGs of clinical relevance. ONE-SENTENCE SUMMARY: Irrigation of urban parks with treated wastewater significantly increased the abundance and diversity of various antibiotic resistance genes, but did not significantly enhance their potential for horizontal gene transfer.
  • Item
    Thumbnail Image
    Field-based evidence for copper contamination induced changes of antibiotic resistance in agricultural soils
    Hu, H-W ; Wang, J-T ; Li, J ; Li, J-J ; Ma, Y-B ; Chen, D ; He, J-Z (WILEY, 2016-11)
    Bacterial resistance to antibiotics and heavy metals are frequently linked, suggesting that exposure to heavy metals might select for bacterial assemblages conferring resistance to antibiotics. However, there is a lack of clear evidence for the heavy metal-induced changes of antibiotic resistance in a long-term basis. Here, we used high-capacity quantitative PCR array to investigate the responses of a broad spectrum of antibiotic resistance genes (ARGs) to 4-5 year copper contamination (0-800 mg kg-1 ) in two contrasting agricultural soils. In total, 157 and 149 unique ARGs were detected in the red and fluvo-aquic soil, respectively, with multidrug and β-lactam as the most dominant ARG types. The highest diversity and abundance of ARGs were observed in medium copper concentrations (100-200 mg kg-1 ) of the red soil and in high copper concentrations (400-800 mg kg-1 ) of the fluvo-aquic soil. The abundances of total ARGs and several ARG types had significantly positive correlations with mobile genetic elements (MGEs), suggesting mobility potential of ARGs in copper-contaminated soils. Network analysis revealed significant co-occurrence patterns between ARGs and microbial taxa, indicating strong associations between ARGs and bacterial communities. Structural equation models showed that the significant impacts of copper contamination on ARG patterns were mainly driven by changes in bacterial community compositions and MGEs. Our results provide field-based evidence that long-term Cu contamination significantly changed the diversity, abundance and mobility potential of environmental antibiotic resistance, and caution the un-perceived risk of the ARG dissemination in heavy metal polluted environments.
  • Item
    Thumbnail Image
    Effects of 3,4-dimethylpyrazole phosphate (DMPP) on nitrification and the abundance and community composition of soil ammonia oxidizers in three land uses
    Shi, X ; Hu, H ; He, J ; Chen, D ; Suter, HC (SPRINGER, 2016-10)
    The application of the nitrification inhibitor, 3,4-dimethylpyrazole-phosphate (DMPP), is considered as an effective strategy to mitigate agricultural nitrogen loss. However, the inhibitory effect of DMPP on nitrification is variable and the importance of the soil microbial community composition to the variability is poorly understood. In this study, nine soils were collected across three land uses to investigate the impact of DMPP on nitrification and associated dynamics of ammonia oxidizers in a 28-day microcosm incubation. The results showed that the efficacy of DMPP at inhibiting net nitrification rates varied highly from no effect to 63.6 % during the first week of incubation. The abundance of ammonia-oxidizing bacteria (AOB), rather than ammonia-oxidizing archaea (AOA), was significantly correlated with nitrate concentrations across three land uses and significantly inhibited by DMPP addition. DMPP had higher efficacy in neutral and alkaline wheat and vegetable soils, compared with pasture soils. Canonical correspondence analysis suggested that soil pH was the most influential factor explaining the community composition of AOB and AOA in the collected soils. However, neither ammonium nitrate nor DMPP addition had a significant effect on the community composition of AOB or AOA during the incubation indicated by non-metric multidimensional scaling ordination. Taken together, our findings indicated that DMPP slowed nitrification by inhibiting the growth of AOB, and DMPP application affected the abundance of AOB more than the ammonia oxidizer community composition.
  • Item
    Thumbnail Image
    Effects of the Nitrification Inhibitor 3,4-Dimethylpyrazole Phosphate on Nitrification and Nitrifiers in Two Contrasting Agricultural Soils
    Shi, X ; Hu, H-W ; Mueller, C ; He, J-Z ; Chen, D ; Suter, HC ; Vieille, C (AMER SOC MICROBIOLOGY, 2016-09)
    UNLABELLED: The nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) is a powerful tool that can be used to promote nitrogen (N) use efficiency and reduce N losses from agricultural systems by slowing nitrification. Mounting evidence has confirmed the functional importance of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in nitrification and N2O production; however, their responses to DMPP amendment and the microbial mechanisms underlying the variable efficiencies of DMPP across different soils remain largely unknown. Here we compared the impacts of DMPP on nitrification and the dynamics of ammonia oxidizers between an acidic pasture soil and an alkaline vegetable soil using a (15)N tracing and (13)CO2-DNA-stable-isotope probing (SIP) technique. The results showed that DMPP significantly inhibited nitrification and N2O production in the vegetable soil only, and the transient inhibition was coupled with a significant decrease in AOB abundance. No significant effects on the community structure of ammonia oxidizers or the abundances of total bacteria and denitrifiers were observed in either soil. The (15)N tracing experiment revealed that autotrophic nitrification was the predominant form of nitrification in both soils. The (13)CO2-DNA-SIP results indicated the involvement of AOB in active nitrification in both soils, but DMPP inhibited the assimilation of (13)CO2 into AOB only in the vegetable soil. Our findings provide evidence that DMPP could effectively inhibit nitrification through impeding the abundance and metabolic activity of AOB in the alkaline vegetable soil but not in the acidic pasture soil, possibly due to the low AOB abundance or the adsorption of DMPP by organic matter. IMPORTANCE: The combination of the (15)N tracing model and (13)CO2-DNA-SIP technique provides important evidence that the nitrification inhibitor DMPP could effectively inhibit nitrification and nitrous oxide emission in an alkaline soil through influencing the abundance and metabolic activity of AOB. In contrast, DMPP amendment has no significant effect on nitrification or nitrifiers in an acidic soil, potentially owing to the low abundance of AOB and the possible adsorption of DMPP by organic matter. Our findings have direct implications for improved agricultural practices through utilizing the nitrification inhibitor DMPP in appropriate situations, and they emphasize the importance of microbial communities to the efficacy of DMPP.
  • Item
    Thumbnail Image
    Temporal changes of antibiotic-resistance genes and bacterial communities in two contrasting soils treated with cattle manure
    Hu, H-W ; Han, X-M ; Shi, X-Z ; Wang, J-T ; Han, L-L ; Chen, D ; He, J-Z ; Smalla, K (OXFORD UNIV PRESS, 2016-02)
    The emerging environmental spread of antibiotic-resistance genes (ARGs) and their subsequent acquisition by clinically relevant microorganisms is a major threat to public health. Animal manure has been recognized as an important reservoir of ARGs; however, the dissemination of manure-derived ARGs and the impacts of manure application on the soil resistome remain obscure. Here, we conducted a microcosm study to assess the temporal succession of total bacteria and a broad spectrum of ARGs in two contrasting soils following manure application from cattle that had not been treated with antibiotics. High-capacity quantitative PCR detected 52 unique ARGs across all the samples, with β-lactamase as the most dominant ARG type. Several genes of soil indigenous bacteria conferring resistance to β-lactam, which could not be detected in manure, were found to be highly enriched in manure-treated soils, and the level of enrichment was maintained over the entire course of 140 days. The enriched β-lactam resistance genes had significantly positive relationships with the relative abundance of the integrase intI1 gene, suggesting an increasing mobility potential in manure-treated soils. The changes in ARG patterns were accompanied by a significant effect of cattle manure on the total bacterial community compositions. Our study indicates that even in the absence of selective pressure imposed by agricultural use of antibiotics, manure application could still strongly impact the abundance, diversity and mobility potential of a broad spectrum of soil ARGs. Our findings are important for reliable prediction of ARG behaviors in soil environment and development of appropriate strategies to minimize their dissemination.