School of Agriculture, Food and Ecosystem Sciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 26
  • Item
    Thumbnail Image
    Distinct microbial communities in the active and permafrost layers on the Tibetan Plateau
    Chen, Y-L ; Deng, Y ; Ding, J-Z ; Hu, H-W ; Xu, T-L ; Li, F ; Yang, G-B ; Yang, Y-H (WILEY, 2017-12)
    Permafrost represents an important understudied genetic resource. Soil microorganisms play important roles in regulating biogeochemical cycles and maintaining ecosystem function. However, our knowledge of patterns and drivers of permafrost microbial communities is limited over broad geographic scales. Using high-throughput Illumina sequencing, this study compared soil bacterial, archaeal and fungal communities between the active and permafrost layers on the Tibetan Plateau. Our results indicated that microbial alpha diversity was significantly higher in the active layer than in the permafrost layer with the exception of fungal Shannon-Wiener index and Simpson's diversity index, and microbial community structures were significantly different between the two layers. Our results also revealed that environmental factors such as soil fertility (soil organic carbon, dissolved organic carbon and total nitrogen contents) were the primary drivers of the beta diversity of bacterial, archaeal and fungal communities in the active layer. In contrast, environmental variables such as the mean annual precipitation and total phosphorus played dominant roles in driving the microbial beta diversity in the permafrost layer. Spatial distance was important for predicting the bacterial and archaeal beta diversity in both the active and permafrost layers, but not for fungal communities. Collectively, these results demonstrated different driving factors of microbial beta diversity between the active layer and permafrost layer, implying that the drivers of the microbial beta diversity observed in the active layer cannot be used to predict the biogeographic patterns of the microbial beta diversity in the permafrost layer.
  • Item
    Thumbnail Image
    Nitrifier-induced denitrification is an important source of soil nitrous oxide and can be inhibited by a nitrification inhibitor 3,4-dimethylpyrazole phosphate
    Shi, X ; Hu, H-W ; Zhu-Barker, X ; Hayden, H ; Wang, J ; Suter, H ; Chen, D ; He, J-Z (WILEY, 2017-12)
    Soil ecosystem represents the largest contributor to global nitrous oxide (N2 O) production, which is regulated by a wide variety of microbial communities in multiple biological pathways. A mechanistic understanding of these N2 O production biological pathways in complex soil environment is essential for improving model performance and developing innovative mitigation strategies. Here, combined approaches of the 15 N-18 O labelling technique, transcriptome analysis, and Illumina MiSeq sequencing were used to identify the relative contributions of four N2 O pathways including nitrification, nitrifier-induced denitrification (nitrifier denitrification and nitrification-coupled denitrification) and heterotrophic denitrification in six soils (alkaline vs. acid soils). In alkaline soils, nitrification and nitrifier-induced denitrification were the dominant pathways of N2 O production, and application of the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) significantly reduced the N2 O production from these pathways; this is probably due to the observed reduction in the expression of the amoA gene in ammonia-oxidizing bacteria (AOB) in the DMPP-amended treatments. In acid soils, however, heterotrophic denitrification was the main source for N2 O production, and was not impacted by the application of DMPP. Our results provide robust evidence that the nitrification inhibitor DMPP can inhibit the N2 O production from nitrifier-induced denitrification, a potential significant source of N2 O production in agricultural soils.
  • Item
    Thumbnail Image
    Aerobic composting reduces antibiotic resistance genes in cattle manure and the resistome dissemination in agricultural soils
    Gou, M ; Hu, H-W ; Zhang, Y-J ; Wang, J-T ; Hayden, H ; Tang, Y-Q ; He, J-Z (ELSEVIER, 2018-01-15)
    Composting has been suggested as a potential strategy to eliminate antibiotic residues and pathogens in livestock manure before its application as an organic fertilizer in agro-ecosystems. However, the impacts of composting on antibiotic resistance genes (ARGs) in livestock manure and their temporal succession following the application of compost to land are not well understood. We examined how aerobic composting affected the resistome profiles of cattle manure, and by constructing laboratory microcosms we compared the effects of manure and compost application to agricultural soils on the temporal succession of a wide spectrum of ARGs. The high-throughput quantitative PCR array detected a total of 144 ARGs across all the soil, manure and compost samples, with Macrolide-Lincosamide-Streptogramin B, aminoglycoside, multidrug, tetracycline, and β-lactam resistance as the most dominant types. Composting significantly reduced the diversity and relative abundance of ARGs and mobile genetic elements (MGEs) in the cattle manure. In the 120-day microcosm incubation, the diversity and abundance of ARGs in manure-treated soils were significantly higher than those in compost-treated soils at the beginning of the experiment. The level of antibiotic resistance rapidly declined over time in all manure- and compost-treated soils, coupled with similar temporal patterns of manure- and compost-derived bacterial communities as revealed by SourceTracker analysis. The network analysis revealed more intensive interactions/associations among ARGs and MGEs in manure-treated soils than in compost-treated soils, suggesting that mobility potential of ARGs was lower in soils amended with compost. Our results provide evidence that aerobic composting of cattle manure may be an effective approach to mitigate the risk of antibiotic resistance propagation associated with land application of organic wastes.
  • Item
    No Preview Available
    Long-Term Nickel Contamination Increases the Occurrence of Antibiotic Resistance Genes in Agricultural Soils
    Hu, H-W ; Wang, J-T ; Li, J ; Shi, X-Z ; Ma, Y-B ; Chen, D ; He, J-Z (AMER CHEMICAL SOC, 2017-01-17)
    Heavy metal contamination is assumed to be a selection pressure on antibiotic resistance, but to our knowledge, evidence of the heavy metal-induced changes of antibiotic resistance is lacking on a long-term basis. Using quantitative PCR array and Illumina sequencing, we investigated the changes of a wide spectrum of soil antibiotic resistance genes (ARGs) following 4-5 year nickel exposure (0-800 mg kg-1) in two long-term experimental sites. A total of 149 unique ARGs were detected, with multidrug and β-lactam resistance as the most prevailing ARG types. The frequencies and abundance of ARGs tended to increase along the gradient of increasing nickel concentrations, with the highest values recorded in the treatments amended with 400 mg nickel kg-1 soil. The abundance of mobile genetic elements (MGEs) was significantly associated with ARGs, suggesting that nickel exposure might enhance the potential for horizontal transfer of ARGs. Network analysis demonstrated significant associations between ARGs and MGEs, with the integrase intI1 gene having the most frequent interactions with other co-occurring ARGs. The changes of ARGs were mainly driven by nickel bioavailability and MGEs as revealed by structural equation models. Taken together, long-term nickel exposure significantly increased the diversity, abundance, and horizontal transfer potential of soil ARGs.
  • Item
    Thumbnail Image
    Diversity of herbaceous plants and bacterial communities regulates soil resistome across forest biomes
    Hu, H-W ; Wang, J-T ; Singh, BK ; Liu, Y-R ; Chen, Y-L ; Zhang, Y-J ; He, J-Z (WILEY, 2018-09)
    Antibiotic resistance is ancient and prevalent in natural ecosystems and evolved long before the utilization of synthetic antibiotics started, but factors influencing the large-scale distribution patterns of natural antibiotic resistance genes (ARGs) remain largely unknown. Here, a large-scale investigation over 4000 km was performed to profile soil ARGs, plant communities and bacterial communities from 300 quadrats across five forest biomes with minimal human impact. We detected diverse and abundant ARGs in forests, including over 160 genes conferring resistance to eight major categories of antibiotics. The diversity of ARGs was strongly and positively correlated with the diversity of bacteria, herbaceous plants and mobile genetic elements (MGEs). The ARG composition was strongly correlated with the taxonomic structure of bacteria and herbs. Consistent with this strong correlation, structural equation modelling demonstrated that the positive effects of bacterial and herb communities on ARG patterns were maintained even when simultaneously accounting for multiple drivers (climate, spatial predictors and edaphic factors). These findings suggest a paradigm that the interactions between aboveground and belowground communities shape the large-scale distribution of soil resistomes, providing new knowledge for tackling the emerging environmental antibiotic resistance.
  • Item
    Thumbnail Image
    Impacts of Projected Climate Warming and Wetting on Soil Microbial Communities in Alpine Grassland Ecosystems of the Tibetan Plateau
    Zeng, J ; Shen, J-P ; Wang, J-T ; Hu, H-W ; Zhang, C-J ; Bai, R ; Zhang, L-M ; He, J-Z (SPRINGER, 2018-05)
    Climate change is projected to have impacts on precipitation and temperature regimes in drylands of high elevation regions, with especially large effects in the Qinghai-Tibetan Plateau. However, there was limited information about how the projected climate change will impact on the soil microbial community and their activity in the region. Here, we present results from a study conducted across 72 soil samples from 24 different sites along a temperature and precipitation gradient (substituted by aridity index ranging from 0.079 to 0.89) of the Plateau, to assess how changes in aridity affect the abundance, community composition, and diversity of bacteria, ammonia-oxidizers, and denitrifers (nirK/S and nosZ genes-containing communities) as well as nitrogen (N) turnover enzyme activities. We found V-shaped or inverted V-shaped relationships between the aridity index (AI) and soil microbial parameters (gene abundance, community structures, microbial diversity, and N turnover enzyme activities) with a threshold at AI = 0.27. The increasing or decreasing rates of the microbial parameters were higher in areas with AI < 0.27 (alpine steppes) than in mesic areas with 0.27 < AI < 0.89 (alpine meadow and swamp meadow). The results indicated that the projected warming and wetting have a strong impact on soil microbial communities in the alpine steppes.
  • Item
    Thumbnail Image
    Initial Copper Stress Strengthens the Resistance of Soil Microorganisms to a Subsequent Copper Stress
    Li, J ; Zheng, Y-M ; Liu, Y-R ; Ma, Y-B ; Hu, H-W ; He, JZ (SPRINGER, 2014-05)
    To improve the prediction of essential ecosystem functioning under future environmental disturbances, it is of significance to identify responses of soil microorganisms to environmental stresses. In this study, we collected polluted soil samples from field plots with eight copper levels ranging from 0 to 3,200 mg Cu kg(-1) soil. Then, the soils with 0 and 3,200 mg Cu kg(-1) were selected to construct a microcosm experiment. Four treatments were set up including Cu0-C and Cu3200-C without further Cu addition, and Cu0-A and Cu3200-A with addition of 57.5 mg Cu kg(-1) soil. We measured substrate-induced respiration (SIR) and potential nitrification rate (PNR). Furthermore, the abundance of bacterial, archaeal 16S rRNA genes, ammonia-oxidizing bacteria and archaea amoA genes were determined through quantitative PCR. The soil microbial communities were investigated by terminal restriction fragment length polymorphism (T-RFLP). For the field samples, the SIR and PNR as well as the abundance of soil microorganisms varied significantly between eight copper levels. Soil microbial communities highly differed between the low and high copper stress. In the microcosm experiment, the PNR and SIR both recovered while the abundance of soil microorganisms varied irregularly during the 90-day incubation. The differences of microbial communities measured by pairwise Bray-Curtis dissimilarities between Cu0-A and Cu0-C on day 0 were significantly higher after subsequent stress than before. However, the differences of microbial communities between Cu3200-A and Cu3200-C on day 0 changed little between after subsequent stress and before. Therefore, initial copper stress could increase the resistance of soil microorganisms to subsequent copper stress.
  • Item
  • Item
    Thumbnail Image
    Short-term copper exposure as a selection pressure for antibiotic resistance and metal resistance in an agricultural soil
    Kang, W ; Zhang, Y-J ; Shi, X ; He, J-Z ; Hu, H-W (SPRINGER HEIDELBERG, 2018-10)
    Owing to the similar mechanisms of antibiotic and metal resistance, there is a growing concern that metal contamination may select for antibiotic resistance genes (ARGs) in the environment. Here, we constructed short-term laboratory microcosms to investigate the dynamics of a wide range of ARGs and two copper (Cu) resistance genes in an agricultural soil amended with a gradient of Cu concentrations (0~1000 mg kg-1). Mobile genetic elements (MGEs) were also quantified as a proxy for the horizontal gene transfer potential of ARGs. We detected 126 unique ARGs across all the soil samples using the high-capacity quantitative PCR array, and multidrug and β-lactam resistance were the most abundant ARG categories. The copper amendments significantly enhanced the absolute and relative abundances of ARGs and MGEs, which gradually increased along the gradient of increasing Cu concentrations. The two Cu resistance genes (copA and pcoR) were highly enriched in low-level Cu treatment (50 and 100 mg kg-1), and their abundances decreased with the increasing Cu concentrations. The level of metal and antibiotic resistance gradually declined over time in all Cu-amended treatments but was still considerably higher in contaminated soils than untreated soils after 56 days' incubation. Significant associations among ARGs and MGEs were revealed by the network analysis, suggesting the mobility potential of antibiotic resistance in Cu-amended soils. No significant positive correlations were found between ARGs and copper resistance genes, suggesting that these genes are not located in the same bacterial hosts. Taken together, our results provide empirical evidence that short-term copper stress can cause evolution of high-level antibiotic and metal resistance and significantly change the diversity, abundance, and horizontal transfer potential of soil ARGs.
  • Item
    Thumbnail Image
    The biogeography of fungal communities in paddy soils is mainly driven by geographic distance
    Yuan, C ; Zhang, L ; Hu, H ; Wang, J ; Shen, J ; He, J (SPRINGER HEIDELBERG, 2018-05)