School of Agriculture, Food and Ecosystem Sciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 12
  • Item
    Thumbnail Image
    Frequent wildfires erode tree persistence and alter stand structure and initial composition of a fire-tolerant sub-alpine forest
    Fairman, TA ; Bennett, LT ; Tupper, S ; Nitschke, CR ; Ward, D (WILEY, 2017-11)
    QUESTION: Frequent severe wildfires have the potential to alter the structure and composition of forests in temperate biomes. While temperate forests dominated by resprouting trees are thought to be largely invulnerable to more frequent wildfires, empirical data to support this assumption are lacking. Does frequent fire erode tree persistence by increasing mortality and reducing regeneration, and what are the broader impacts on forest structure and understorey composition? LOCATION: Sub‐alpine open Eucalyptus pauciflora forests, Australian Alps, Victoria, Australia. METHODS: We examined tree persistence and understorey composition of E. pauciflora open forests that were unburned, burned once, twice or three times by high‐severity wildfires between 2003 and 2013. At each of 20 sites (five per fire frequency class) we assessed extent of top‐kill and mortality of eucalypt clumps, spatial configuration of surviving and dead clumps, densities of new and lignotuberous eucalypt seedlings, and shrub and grass cover. RESULTS: At least 2 yr after the last wildfire, proportions of top‐killed E. pauciflora stems were significantly higher, and densities of live basal resprouts significantly lower, at sites burned two or three times compared to once burned or unburned sites. Clump death increased to 50% of individuals at sites burned by three short‐interval wildfires, which led to changes in live tree patchiness, as indicated by nearest‐neighbour indices. Increased tree mortality was not offset by seedling recruitment, which was significantly lower at the twice‐ and thrice‐burned sites relative to single‐burn sites – although seedling recruitment was also influenced by topography and coarse woody debris. In addition to changes in the tree layer, the prominence of understorey shrubs was substantially reduced, and the frequency of grasses markedly increased, after two, and particularly three wildfires. CONCLUSIONS: Our study provides strong empirical evidence of ecologically significant change in E. pauciflora forests after short‐interval severe wildfires, namely, erosion of the persistence niche of resprouting trees, and a shift in understorey dominance from shrubs to grasses. Our findings highlight the need to consider the impacts of compounded perturbation on forests under changing climates, including testing assumptions of long‐term persistence of resprouter‐dominated communities.
  • Item
    Thumbnail Image
    The role of topography and the north Indian monsoon on mean monthly climate interpolation within the Himalayan Kingdom of Bhutan
    Stewart, SB ; Choden, K ; Fedrigo, M ; Roxburgh, SH ; Keenan, RJ ; Nitschke, CR (WILEY, 2017-08)
    ABSTRACT Spatial climate datasets currently available for Bhutan are limited by weather station data availability, spatial resolution or interpolation methodology. This article presents new datasets for monthly maximum temperature, minimum temperature, precipitation and vapour pressure climate normals interpolated for the 1986–2015 reference period using trivariate smoothing splines. The inclusion of standardized day time Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature (LST) values as partial spline dependencies reduced cross validated root mean square error (RMSE) for maximum temperature by up to 16.0% and was most effective between March and September. Using both a topographic index of relative elevation and standardized night time MODIS LST values as partial spline dependencies reduced monthly mean minimum temperature RMSE by up to 23.4%. Neither variable was effective for minimum temperature interpolation between June and September. High humidity, extensive cloud cover and heavy precipitation occur during these months, which are likely to suppress the formation of temperature inversions that typically form under clear, calm conditions. These new temperature and precipitation surfaces show distinct differences from the WorldClim and CRU CL 2.0 datasets, which do not use weather stations within Bhutan for calibration. New precipitation surfaces better describe the heavy rainfall experienced in the southern foothills while retaining the effect of orography throughout the central valleys and ranges. The development of vapour pressure surfaces also allow for the calculation of ecologically important variables such as vapour pressure deficit, and may also be useful for solar radiation modelling in the region. The different datasets presented in this article will facilitate ecological and agricultural research in Bhutan and provide high quality surfaces needed for future climate change scenarios.
  • Item
    Thumbnail Image
    Nutrient uptake and use efficiency in co-occurring plants along a disturbance and nutrient availability gradient in the boreal forests of the southwest Yukon, Canada
    Nitschke, CR ; Waeber, PO ; Klaassen, JW ; Dordel, J ; Innes, JL ; Aponte, C ; Gilliam, F (Wiley, 2017-01-01)
    Aim In boreal forest ecosystems plant productivity is typically constrained by mineral nutrient availability. In some boreal regions changes in nutrient availability have led to limited changes in productivity but large changes in plant composition. To determine the impact that a change in nutrient availability has on the plant communities it is important to understand how species use nutrients. Here we explore how plant species and functional types in a cold‐dry boreal forest community use available nutrients by quantifying their respective nutrient utilization and response efficiency. Location Boreal forests in the southwest corner of the Yukon Territory, Canada. Methods We collected soil samples and total plant biomass from 29 plots from nine locations subjected to fire, harvesting or bark beetle disturbances. Nutrient analysis of all vegetation and soil samples were conducted to determine the concentration of macro‐ and micronutrients from both plant biomass and soils collected. Nutrient pools between stands with different disturbance histories are compared. Nutrient uptake, use and response efficiencies were then calculated and nutrient response profiles were developed for each species/functional type. Results We found few differences between nutrient pools in plots with different disturbance histories. A clear separation of species and functional groups in elemental hyperspace suggesting divergent nutrient use in co‐occurring species was identified. The use efficiency analysis highlighted that the species with the highest uptake efficiency have lowest use efficiency and vice versa. Species showed either a monotonic or constant relationship between nutrient response efficiency and N, P, K, reflecting a lack of relationship between plant productivity and resource availability or a linear increase in productivity with increasing nutrient availability, respectively. Conclusions Our findings indicate that species are maximizing nutrient use along different parts of the resource gradient, which has implications for understanding how species respond to changes in nutrient availability. Our findings also show that nutrient use by some species may be governed more by uptake efficiency than use efficiency, allowing them to respond to increases in resource availability by increasing uptake rather than use.
  • Item
    Thumbnail Image
    Improving temperature interpolation using MODIS LST and local topography: a comparison of methods in south east Australia
    Stewart, SB ; Nitschke, CR (WILEY, 2017-06-15)
    ABSTRACT Available climate data for south east Australia is reliant upon elevational lapse rates, which do not account for mesoscale processes that can affect temperatures, such as cold air drainage. Additional predictor variables are available for generating new climate datasets such as topographic indices and Moderate Resolution Imaging Spectroradiometer land surface temperature (MODIS LST); however, these have not been thoroughly tested to date. In this study, the relative benefits of including a localized topographic index and standardized MODIS LST values for temperature interpolation were assessed using partial bivariate splines, full and partial trivariate splines, and regression kriging. Trivariate splines provided the best interpolation performance in most cases; however, the partial bivariate spline with a fixed dependence upon elevation performed marginally better than the full trivariate spline for minimum temperature. The local topographic index improved the RMSE of minimum temperature climate normals by 17% in comparison to the best performing elevation only model. A further improvement for minimum temperature performance was achieved by including standardized night time MODIS LST values as covariates (34–39% reduction in RMSE). Standardized day time MODIS LST values improved maximum temperature interpolation performance; however, the improvement was only marginal in comparison to the full trivariate spline (6% reduction in RMSE). Cross validation of daily maximum and minimum temperature anomalies reflected performance trends shown in the climate normal analysis. Results suggest that the use of alternative approaches to interpolating temperature data may have significant implications for the calculation of bioclimatic variables and provide new opportunities to study extremes at high spatial and temporal resolutions using existing weather station networks. Furthermore, improving minimum temperature surfaces by accounting for temperature inversions driven by cold air drainage regimes may improve our ability to incorporate mesoscale temperature variability into a variety of applications, such as deriving temperature dependent climatic variables, species distribution modelling and assessments of fire risk.
  • Item
    Thumbnail Image
    Combining optimization and simulation modelling to measure the cumulative impacts of prescribed fire and wildfire on vegetation species diversity
    Chick, MP ; York, A ; Sitters, H ; Di Stefano, J ; Nitschke, CR ; Driscoll, D (WILEY, 2019-03)
    Growth‐stage optimization (GSO) offers a new approach to biodiversity conservation in fire‐prone regions by estimating the optimal distribution of vegetation growth stages that maximize a species diversity index. This optimal growth‐stage structure provides managers an operational goal explicitly linked to a positive conservation outcome but does not define the fire regime needed to achieve it. We paired GSO with LANDIS II, a landscape succession and disturbance simulation model, to (a) estimate the optimal growth‐stage structure that maximized vegetation diversity in a south‐east Australian heathy woodland, (b) define the fire regime needed to achieve it, and (c) determine the cumulative effects of different fire‐regime scenarios on vegetation diversity over a 60‐year period. Scenarios included 0%, 2%, 5%, and 10% of the landscape burnt per year by prescribed fire only, or in combination with three alternative wildfire regimes. Furthermore, we investigated the differences in the optimal growth‐stage structure relating to above‐ground, soil seedbank, and total (above and soil seedbank) diversity datasets. The growth‐stage structure that maximized total vegetation diversity comprised approximately even proportions of all stages. In contrast, separately analysed above‐ground and soil seedbank data resulted in a greater proportion of younger and older growth‐stages, respectively. Scenarios including 5% prescribed burning per year (with and without wildfire) resulted in diversity values within 1.5% of the theoretical maximum value. Scenarios including 2% and 10% prescribed fire resulted in diversity values 8%–12% and 1.5%–5% lower than the maximum, respectively. Scenarios without prescribed fire caused diversity to fall 30%–70%. Trends across the 60 years showed that wildfire depressed diversity and subsequent prescribed fire drove recovery within 15 years. The largest threat to vegetation diversity was the absence of fire. Synthesis and applications. Combining growth‐stage optimization and simulation modelling is a powerful way of defining a conservation‐based fire management goal and identifying the prescribed fire regime needed to achieve it. We demonstrated that vegetation diversity in heathy woodland was increased by prescribed fire, with and without the cumulative effect of wildfire, and declined sharply when fire was excluded. Our method provides a flexible platform for developing long‐term fire management strategies that seek to balance human safety and biodiversity conservation. Including both plants and animals in GSO will help land managers meet the needs of multiple taxa.
  • Item
    Thumbnail Image
    Factors influencing above-ground and soil seed bank vegetation diversity at different scales in a quasi-Mediterranean ecosystem
    Chick, MP ; Nitschke, CR ; Cohn, JS ; Penman, TD ; York, A ; Tanentzap, A (WILEY, 2018-07)
    QUESTIONS: Are factors influencing plant diversity in a fire‐prone Mediterranean ecosystem of southeast Australia scale‐dependent? LOCATION: Heathy woodland, Otways region, Victoria, southeast Australia METHODS: We measured patterns of above‐ground and soil seed bank vegetation diversity and associated them with climatic, biotic, edaphic, topographic, spatial and disturbance factors at multiple scales (macro to micro) using linear mixed effect and generalized dissimilarity modelling. RESULTS: At the macro‐scale, we found species richness above‐ground best described by climatic factors and in the soil seed bank by disturbance factors. At the micro‐scale we found species richness best described above‐ground and in the soil seed bank by disturbance factors, in particular time‐since‐last‐fire. We found variance in macro‐scale β‐diversity (species turnover) best explained above‐ground by climatic and disturbance factors and in the soil seed bank by climatic and biotic factors. CONCLUSIONS: Regional climatic gradients interact with edaphic factors and fire disturbance history at small spatial scales to influence species richness and turnover in the studied ecosystem. Current fire management regimes need to incorporate key climatic–disturbance–diversity interactions to maintain floristic diversity in the studied system.
  • Item
  • Item
    Thumbnail Image
    Structural diversity underpins carbon storage in Australian temperate forests
    Aponte, C ; Kasel, S ; Nitschke, CR ; Tanase, MA ; Vickers, H ; Parker, L ; Fedrigo, M ; Kohout, M ; Ruiz-Benito, P ; Zavala, MA ; Bennett, LT ; Hickler, T (WILEY, 2020-05)
    Abstract Aim Forest carbon storage is the result of a multitude of interactions among biotic and abiotic factors. Our aim was to use an integrative approach to elucidate mechanistic relationships of carbon storage with biotic and abiotic factors in the natural forests of temperate Australia, a region that has been overlooked in global analyses of carbon‐biodiversity relations. Location South‐eastern Australia. Time period 2010–2015. Major taxa studied Forest trees in 732 plots. Methods We used the most comprehensive forest inventory database available for south‐eastern Australia and structural equation models to assess carbon‐storage relationships with biotic factors (species or functional diversity, community‐weighted mean (CWM) trait values, structural diversity) and abiotic factors (climate, soil, fire history). To assess the consistency of relationships at different environmental scales, our analyses involved three levels of data aggregation: six forest types, two forest groups (representing different growth environments), and all forests combined. Results Structural diversity was consistently the strongest independent predictor of carbon storage at all levels of data aggregation, whereas relationships with species‐ and functional‐diversity indices were comparatively weak. CWMs of maximum height and wood density were also significant independent predictors of carbon storage in most cases. In comparison, climate, soil, and fire history had only minor and mainly indirect effects via biotic factors on carbon storage. Main conclusions Our results indicate that carbon storage in our temperate forests was underpinned by tree structural diversity (representing efficient utilisation of space) and by CWM trait values (representing selection effects) more so than by tree species richness or functional diversity. Abiotic effects were comparatively weak and mostly indirect via biotic factors irrespective of the environmental range. Our study highlights the importance of managing forests for functionally important species and to maintain and enhance their structural complexity in order to support carbon storage.
  • Item
    Thumbnail Image
    Climate change drives habitat contraction of a nocturnal arboreal marsupial at its physiological limits
    Wagner, B ; Baker, PJ ; Stewart, SB ; Lumsden, LF ; Nelson, JL ; Cripps, JK ; Durkin, LK ; Scroggie, MP ; Nitschke, CR (WILEY, 2020-10-01)
    Increasing impacts of climatic change and anthropogenic disturbances on natural ecosystems are leading to population declines or extinctions of many species worldwide. In Australia, recent climatic change has caused population declines in some native fauna. The projected increase in mean annual temperature by up to 4°C by the end of the 21st century is expected to exacerbate these trends. The greater glider (Petauroides volans), Australia’s largest gliding marsupial, is widely distributed along the eastern coast, but has recently experienced drastic declines in population numbers. Its association with hollow‐bearing trees, used for nesting, has made it an important species for the conservation of old‐growth forest ecosystems. Fires and timber harvesting have been identified as threats to the species. Greater gliders have disappeared however from areas that have experienced neither raising questions about the role of other factors in their decline. A unique physiology and strict Eucalyptus diet make them vulnerable to high temperatures and low water availability. As such, climatic conditions may drive habitat selection and recent climatic trends may be contributing to observed population declines. Using presence:absence data from across its distribution in Victoria, coupled with high spatial and temporal resolution climatic data and machine‐learning modeling, we tested the influence of climatic, topographic, edaphic, biotic, and disturbance variables on greater glider occupancy and habitat suitability. We found that climatic variables, particularly those related to aridity and extreme weather conditions, such as number of nights warmer than 20°C, were highly significant predictors of greater glider occurrence. Climatic conditions associated with habitat suitability have changed over time, with increasing aridity across much of its southeastern distribution. These changes in climate are closely aligned with observed population declines across this region. At higher elevation, some areas where the greater glider is observed at high densities, conditions have become wetter, which is improving habitat quality. These areas are of growing significance to greater glider conservation as they will become increasingly important as climatic refugia in the coming decades. Protecting these areas of habitat will be critical for facilitating the conservation of greater gliders as the broader landscape becomes less hospitable under future climatic change.
  • Item
    Thumbnail Image
    Genetic data and climate niche suitability models highlight the vulnerability of a functionally important plant species from south-eastern Australia
    Miller, AD ; Nitschke, C ; Weeks, AR ; Weatherly, WL ; Heyes, SD ; Sinclair, SJ ; Holland, OJ ; Stevenson, A ; Broadhurst, L ; Hoebee, SE ; Sherman, CDH ; Morgan, JW (WILEY, 2020-09)
    Habitat fragmentation imperils the persistence of many functionally important species, with climate change a new threat to local persistence due to climate niche mismatching. Predicting the evolutionary trajectory of species essential to ecosystem function under future climates is challenging but necessary for prioritizing conservation investments. We use a combination of population genetics and niche suitability models to assess the trajectory of a functionally important, but highly fragmented, plant species from south-eastern Australia (Banksia marginata, Proteaceae). We demonstrate significant genetic structuring among, and high level of relatedness within, fragmented remnant populations, highlighting imminent risks of inbreeding. Population simulations, controlling for effective population size (N e), suggest that many remnant populations will suffer rapid declines in genetic diversity due to drift in the absence of intervention. Simulations were used to demonstrate how inbreeding and drift processes might be suppressed by assisted migration and population mixing approaches that enhance the size and connectivity of remnant populations. These analyses were complemented by niche suitability models that predicted substantial reductions of suitable habitat by 2080; ~30% of the current distribution of the species climate niche overlaps with the projected distribution of the species climate niche in the geographic region by the 2080s. Our study highlights the importance of conserving remnant populations and establishing new populations in areas likely to support B. marginata in the future, and adopting seed sourcing strategies that can help populations overcome the risks of inbreeding and maladaptation. We also argue that ecological replacement of B. marginata using climatically suited plant species might be needed in the future to maintain ecosystem processes where B. marginata cannot persist. We recommend the need for progressive revegetation policies and practices to prevent further deterioration of species such as B. marginata and the ecosystems they support.