School of Agriculture, Food and Ecosystem Sciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 43
  • Item
    No Preview Available
    Back to the future for drought tolerance
    Guadarrama-Escobar, LM ; Hunt, J ; Gurung, A ; Zarco-Tejada, PJ ; Shabala, S ; Camino, C ; Hernandez, P ; Pourkheirandish, M (WILEY, 2024-04)
    Global agriculture faces increasing pressure to produce more food with fewer resources. Drought, exacerbated by climate change, is a major agricultural constraint costing the industry an estimated US$80 billion per year in lost production. Wild relatives of domesticated crops, including wheat (Triticum spp.) and barley (Hordeum vulgare L.), are an underutilized source of drought tolerance genes. However, managing their undesirable characteristics, assessing drought responses, and selecting lines with heritable traits remains a significant challenge. Here, we propose a novel strategy of using multi-trait selection criteria based on high-throughput spectral images to facilitate the assessment and selection challenge. The importance of measuring plant capacity for sustained carbon fixation under drought stress is explored, and an image-based transpiration efficiency (iTE) index obtained via a combination of hyperspectral and thermal imaging, is proposed. Incorporating iTE along with other drought-related variables in selection criteria will allow the identification of accessions with diverse tolerance mechanisms. A comprehensive approach that merges high-throughput phenotyping and de novo domestication is proposed for developing drought-tolerant prebreeding material and providing breeders with access to gene pools containing unexplored drought tolerance mechanisms.
  • Item
    No Preview Available
    Wheat Ym2 originated from Aegilops sharonensis and confers resistance to soil-borne Wheat yellow mosaic virus infection to the roots
    Mishina, K ; Suzuki, T ; Oono, Y ; Yamashita, Y ; Zhu, H ; Ogawa, T ; Ohta, M ; Doman, K ; Xu, W ; Takahashi, D ; Miyazaki, T ; Tagiri, A ; Soma, C ; Horita, H ; Nasuda, S ; De Oliveira, R ; Paux, E ; Chen, G ; Pourkheirandish, M ; Wu, J ; Liu, C ; Komatsuda, T (NATL ACAD SCIENCES, 2023-03-09)
    Wheat yellow mosaic virus (WYMV) is a pathogen transmitted into its host's roots by the soil-borne vector Polymyxa graminis. Ym1 and Ym2 genes protect the host from the significant yield losses caused by the virus, but the mechanistic basis of these resistance genes remains poorly understood. Here, it has been shown that Ym1 and Ym2 act within the root either by hindering the initial movement of WYMV from the vector into the root and/or by suppressing viral multiplication. A mechanical inoculation experiment on the leaf revealed that the presence of Ym1 reduced viral infection incidence, rather than viral titer, while that of Ym2 was ineffective in the leaf. To understand the basis of the root specificity of the Ym2 product, the gene was isolated from bread wheat using a positional cloning approach. The candidate gene encodes a CC-NBS-LRR protein and it correlated allelic variation with respect to its sequence with the host's disease response. Ym2 (B37500) and its paralog (B35800) are found in the near-relatives, respectively, Aegilops sharonensis and Aegilops speltoides (a close relative of the donor of bread wheat's B genome), while both sequences, in a concatenated state, are present in several accessions of the latter species. Structural diversity in Ym2 has been generated via translocation and recombination between the two genes and enhanced by the formation of a chimeric gene resulting from an intralocus recombination event. The analysis has revealed how the Ym2 region has evolved during the polyploidization events leading to the creation of cultivated wheat.
  • Item
    Thumbnail Image
    The barley leaf rust resistance gene Rph3 encodes a predicted membrane protein and is induced upon infection by avirulent pathotypes of Puccinia hordei
    Dinh, HX ; Singh, D ; Gomez de la Cruz, D ; Hensel, G ; Kumlehn, J ; Mascher, M ; Stein, N ; Perovic, D ; Ayliffe, M ; Moscou, MJ ; Park, RF ; Pourkheirandish, M (NATURE PORTFOLIO, 2022-05-02)
    Leaf rust, caused by Puccinia hordei, is an economically significant disease of barley, but only a few major resistance genes to P. hordei (Rph) have been cloned. In this study, gene Rph3 was isolated by positional cloning and confirmed by mutational analysis and transgenic complementation. The Rph3 gene, which originated from wild barley and was first introgressed into cultivated Egyptian germplasm, encodes a unique predicted transmembrane resistance protein that differs from all known plant disease resistance proteins at the amino acid sequence level. Genetic profiles of diverse accessions indicated limited genetic diversity in Rph3 in domesticated germplasm, and higher diversity in wild barley from the Eastern Mediterranean region. The Rph3 gene was expressed only in interactions with Rph3-avirulent P. hordei isolates, a phenomenon also observed for transcription activator-like effector-dependent genes known as executors conferring resistance to Xanthomonas spp. Like known transmembrane executors such as Bs3 and Xa7, heterologous expression of Rph3 in N. benthamiana induced a cell death response. The isolation of Rph3 highlights convergent evolutionary processes in diverse plant-pathogen interaction systems, where similar defence mechanisms evolved independently in monocots and dicots.
  • Item
    Thumbnail Image
    Grain dispersal mechanism in cereals arose from a genome duplication followed by changes in spatial expression of genes involved in pollen development
    Cross, A ; Li, JB ; Waugh, R ; Golicz, AA ; Pourkheirandish, M (SPRINGER, 2022-04)
    Grain disarticulation in wild progenitor of wheat and barley evolved through a local duplication event followed by neo-functionalization resulting from changes in location of gene expression. One of the most critical events in the process of cereal domestication was the loss of the natural mode of grain dispersal. Grain dispersal in barley is controlled by two major genes, Btr1 and Btr2, which affect the thickness of cell walls around the disarticulation zone. The barley genome also encodes Btr1-like and Btr2-like genes, which have been shown to be the ancestral copies. While Btr and Btr-like genes are non-redundant, the biological function of Btr-like genes is unknown. We explored the potential biological role of the Btr-like genes by surveying their expression profile across 212 publicly available transcriptome datasets representing diverse organs, developmental stages and stress conditions. We found that Btr1-like and Btr2-like are expressed exclusively in immature anther samples throughout Prophase I of meiosis within the meiocyte. The similar and restricted expression profile of these two genes suggests they are involved in a common biological function. Further analysis revealed 141 genes co-expressed with Btr1-like and 122 genes co-expressed with Btr2-like, with 105 genes in common, supporting Btr-like genes involvement in a shared molecular pathway. We hypothesize that the Btr-like genes play a crucial role in pollen development by facilitating the formation of the callose wall around the meiocyte or in the secretion of callase by the tapetum. Our data suggest that Btr genes retained an ancestral function in cell wall modification and gained a new role in grain dispersal due to changes in their spatial expression becoming spike specific after gene duplication.
  • Item
    No Preview Available
    Mapping of the eibi1 gene responsible for the drought hypersensitive cuticle in wild barley (Hordeum spontaneum)
    Chen, G ; Komatsudu, T ; Pourkheirandish, M ; Sameri, M ; Sato, K ; Krugman, T ; Fahima, T ; Korol, AB ; Nevo, E (JAPANESE SOC BREEDING, 2009-03)
    Segregation analysis showed that eibi1, a drought hypersensitive cuticle wild barley mutant, was monogenic and recessive, and mapped in two F2 populations, one made from a cross between the mutant and a cultivated barley (cv. Morex), and the other between the mutant and another wild barley. A microsatellite marker screen showed that the gene was located on barley chromosome 3H, and a set of markers already assigned to this chromosome, including both microsatellites and ESTs, was used to construct a genetic map. eibi1 co-segregated with barley EST AV918546, and was located to bin 6. The synteny between barley and rice in this region is incomplete, with a large discrepancy in map distances, and the presence of multiple inversions.
  • Item
    No Preview Available
    Six-rowed barley originated from a mutation in a homeodomain-leucine zipper I-class homeobox gene
    Komatsuda, T ; Pourkheirandish, M ; He, C ; Azhaguvel, P ; Kanamori, H ; Perovic, D ; Stein, N ; Graner, A ; Wicker, T ; Tagiri, A ; Lundqvist, U ; Fujimura, T ; Matsuoka, M ; Matsumoto, T ; Yano, M (NATL ACAD SCIENCES, 2007-01-23)
    Increased seed production has been a common goal during the domestication of cereal crops, and early cultivators of barley (Hordeum vulgare ssp. vulgare) selected a phenotype with a six-rowed spike that stably produced three times the usual grain number. This improved yield established barley as a founder crop for the Near Eastern Neolithic civilization. The barley spike has one central and two lateral spikelets at each rachis node. The wild-type progenitor (H. vulgare ssp. spontaneum) has a two-rowed phenotype, with additional, strictly rudimentary, lateral rows; this natural adaptation is advantageous for seed dispersal after shattering. Until recently, the origin of the six-rowed phenotype remained unknown. In the present study, we isolated vrs1 (six-rowed spike 1), the gene responsible for the six-rowed spike in barley, by means of positional cloning. The wild-type Vrs1 allele (for two-rowed barley) encodes a transcription factor that includes a homeodomain with a closely linked leucine zipper motif. Expression of Vrs1 was strictly localized in the lateral-spikelet primordia of immature spikes, suggesting that the VRS1 protein suppresses development of the lateral rows. Loss of function of Vrs1 resulted in complete conversion of the rudimentary lateral spikelets in two-rowed barley into fully developed fertile spikelets in the six-rowed phenotype. Phylogenetic analysis demonstrated that the six-rowed phenotype originated repeatedly, at different times and in different regions, through independent mutations of Vrs1.
  • Item
    No Preview Available
    Analysis of the barley chromosome 2 region containing the six-rowed spike gene vrs1 reveals a breakdown of rice-barley micro collinearity by a transposition
    Pourkheirandish, M ; Wicker, T ; Stein, N ; Fujimura, T ; Komatsuda, T (SPRINGER, 2007-05)
    In cultivated barley (Hordeum vulgare ssp. vulgare), six-rowed spikes produce three times as many seeds per spike as do two-rowed spikes. The determinant of this trait is the Mendelian gene vrs1, located on chromosome 2H, which is syntenous with rice (Oryza sativa) chromosomes 4 and 7. We exploited barley-rice micro-synteny to increase marker density in the vrs1 region as a prelude to its map-based cloning. The rice genomic sequence, covering a 980 kb contig, identified barley ESTs linked to vrs1. A high level of conservation of gene sequence was obtained between barley chromosome 2H and rice chromosome 4. A total of 22 EST-based STS markers were placed within the target region, and the linear order of these markers in barley and rice was identical. The genetic window containing vrs1 was narrowed from 0.5 to 0.06 cM, which facilitated covering the vrs1 region by a 518 kb barley BAC contig. An analysis of the contig sequence revealed that a rice Vrs1 orthologue is present on chromosome 7, suggesting a transposition of the chromosomal segment containing Vrs1 within barley chromosome 2H. The breakdown of micro-collinearity illustrates the limitations of synteny cloning, and stresses the importance of implementing genomic studies directly in the target species.
  • Item
    No Preview Available
    Genetic characterization of Iranian native Bombyx mori strains using amplified fragment length polymorphism markers
    Mirhoseini, SZ ; Dalirsefat, SB ; Pourkheirandish, M (OXFORD UNIV PRESS INC, 2007-06)
    Genetic relationships within and among seven Iranian native silkworm strains was determined by DNA fingerprinting by using amplified fragment length polymorphism (AFLP) markers. In total, 189 informative AFLP markers were generated and analyzed. Estimates of Nei's gene diversity for all loci in individual strains showed a higher degree of genetic similarity within each studied strain. The highest and the least degrees of gene diversity were related to Khorasan Pink (h = 0.1804) and Baghdadi (h = 0.1412) strains, respectively. The unweighted pair-group method with arithmetic average dendrogram revealed seven strains of silkworm, Bombyx mori (L.), resolving into two major clusters. The highest degree of genetic similarity was related to Baghdadi and Harati White, and the least degree was related to Guilan Orange and Harati Yellow. The genetic similarity estimated within and among silkworms could be explained by the pedigrees, historical and geographical distribution of the strains, effective population size, inbreeding rate, selection intensity, and gene flow. This study revealed that the variability of DNA fingerprints within and among silkworm strains could provide an essential basis for breeders in planning crossbreeding strategies to produce potentially hetrotic hybrids in addition to contributing in conservation programs.
  • Item
    Thumbnail Image
    Analysis of Intraspecies Diversity in Wheat and Barley Genomes Identifies Breakpoints of Ancient Haplotypes and Provides Insight into the Structure of Diploid and Hexaploid Triticeae Gene Pools
    Wicker, T ; Krattinger, SG ; Lagudah, ES ; Komatsuda, T ; Pourkheirandish, M ; Matsumoto, T ; Cloutier, S ; Reiser, L ; Kanamori, H ; Sato, K ; Perovic, D ; Stein, N ; Keller, B (AMER SOC PLANT BIOLOGISTS, 2009-01)
    A large number of wheat (Triticum aestivum) and barley (Hordeum vulgare) varieties have evolved in agricultural ecosystems since domestication. Because of the large, repetitive genomes of these Triticeae crops, sequence information is limited and molecular differences between modern varieties are poorly understood. To study intraspecies genomic diversity, we compared large genomic sequences at the Lr34 locus of the wheat varieties Chinese Spring, Renan, and Glenlea, and diploid wheat Aegilops tauschii. Additionally, we compared the barley loci Vrs1 and Rym4 of the varieties Morex, Cebada Capa, and Haruna Nijo. Molecular dating showed that the wheat D genome haplotypes diverged only a few thousand years ago, while some barley and Ae. tauschii haplotypes diverged more than 500,000 years ago. This suggests gene flow from wild barley relatives after domestication, whereas this was rare or absent in the D genome of hexaploid wheat. In some segments, the compared haplotypes were very similar to each other, but for two varieties each at the Rym4 and Lr34 loci, sequence conservation showed a breakpoint that separates a highly conserved from a less conserved segment. We interpret this as recombination breakpoints of two ancient haplotypes, indicating that the Triticeae genomes are a heterogeneous and variable mosaic of haplotype fragments. Analysis of insertions and deletions showed that large events caused by transposable element insertions, illegitimate recombination, or unequal crossing over were relatively rare. Most insertions and deletions were small and caused by template slippage in short homopolymers of only a few base pairs in size. Such frequent polymorphisms could be exploited for future molecular marker development.
  • Item
    No Preview Available
    Molecular evolution and phylogeny of the RPB2 gene in the genus Hordeum
    Sun, G ; Pourkheirandish, M ; Komatsuda, T (OXFORD UNIV PRESS, 2009-04)
    BACKGROUND AND AIMS: It is known that the miniature inverted-repeat terminal element (MITE) preferentially inserts into low-copy-number sequences or genic regions. Characterization of the second largest subunit of low-copy nuclear RNA polymerase II (RPB2) has indicated that MITE and indels have shaped the homoeologous RPB2 loci in the St and H genome of Eymus species in Triticeae. The aims of this study was to determine if there is MITE in the RPB2 gene in Hordeum genomes, and to compare the gene evolution of RPB2 with other diploid Triticeae species. The sequences were used to reconstruct the phylogeny of the genus Hordeum. METHODS: RPB2 regions from all diploid species of Hordeum, one tetraploid species (H. brevisubulatum) and ten accessions of diploid Triticeae species were amplified and sequenced. Parsimony analysis of the DNA dataset was performed in order to reveal the phylogeny of Hordeum species. KEY RESULTS: MITE was detected in the Xu genome. A 27-36 bp indel sequence was found in the I and Xu genome, but deleted in the Xa and some H genome species. Interestingly, the indel length in H genomes corresponds well to their geographical distribution. Phylogenetic analysis of the RPB2 sequences positioned the H and Xa genome in one monophyletic group. The I and Xu genomes are distinctly separated from the H and Xa ones. The RPB2 data also separated all New World H genome species except H. patagonicum ssp. patagonicum from the Old World H genome species. CONCLUSIONS: MITE and large indels have shaped the RPB2 loci between the Xu and H, I and Xa genomes. The phylogenetic analysis of the RPB2 sequences confirmed the monophyly of Hordeum. The maximum-parsimony analysis demonstrated the four genomes to be subdivided into two groups.