School of Agriculture, Food and Ecosystem Sciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 213
  • Item
    Thumbnail Image
    Current and future adoption of leucaena-grass pastures in northern Australia
    Kenny, S ; Drysdale, G (CENTRO INT AGRICULTURA TROPICAL-CIAT, 2019-09)
    Keynote paper presented at the International Leucaena Conference, 1‒3 November 2018, Brisbane, Queensland, Australia.The leucaena-grass pastures and target markets for adoption project was commissioned by Meat & Livestock Australia (MLA) to examine the scope for further adoption of leucaena-grass pastures in northern Australia. Drawing upon stakeholder and producer interviews, focus groups, mapping of biophysical factors critical to growing leucaena and a review of existing literature, regional adoption profiles were developed using the ADOPT model. This work outlines the current and future potential for adoption of leucaena in northern Australia and recommends 5 interrelated strategic actions designed to support the ongoing adoption. These actions have been designed to address the complex technical, social and biophysical requirements for successful adoption and will require collaboration between investors, The Leucaena Network, producers, government agencies and the private sector to be effective.
  • Item
    Thumbnail Image
    Microbial communities in top- and subsoil of repacked soil columns respond differently to amendments but their diversity is negatively correlated with plant productivity
    Celestina, C ; Wood, JL ; Manson, JB ; Wang, X ; Sale, PWG ; Tang, C ; Franks, AE (NATURE PORTFOLIO, 2019-06-20)
    Organic and inorganic amendments with equivalent nutrient content may have comparable fertilizer effects on crop yield, but their effects on the soil microbial community and subsequent plant-soil-microbe interactions in this context are unknown. This experiment aimed to understand the relationship between soil microbial communities, soil physicochemical characteristics and crop performance after addition of amendments to soil. Poultry litter and synthetic fertilizer with balanced total nitrogen (N) content equivalent to 1,200 kg ha-1 were added to the topsoil (0-10 cm) or subsoil layer (20-30 cm) of repacked soil columns. Wheat plants were grown until maturity. Soil samples were taken at Zadoks 87-91 (76 days after sowing) for analysis of bacterial and fungal communities using 16S and ITS amplicon sequencing. The interaction between amendment type and placement depth had significant effects on bacterial and fungal community structure and diversity in the two soil layers. Addition of poultry litter and fertilizer stimulated or suppressed different taxa in the topsoil and subsoil leading to divergence of these layers from the untreated control. Both amendments reduced microbial community richness, diversity and evenness in the topsoil and subsoil compared to the nil-amendment control, with these reductions in diversity being consistently negatively correlated with plant biomass (root and shoot weight, root length, grain weight) and soil fertility (soil NH4+, shoot N). These results indicate that in this experimental system, the soil microbial diversity was correlated negatively with plant productivity.
  • Item
    Thumbnail Image
    Fungal Planet description sheets: 951-1041
    Crous, PW ; Wingfield, MJ ; Lombard, L ; Roets, F ; Swart, WJ ; Alvarado, P ; Carnegie, AJ ; Moreno, G ; Luangsa-ard, J ; Thangavel, R ; Alexandrova, AV ; Baseia, IG ; Bellanger, J-M ; Bessette, AE ; Bessette, AR ; De la Pena-Lastra, S ; Garcia, D ; Gene, J ; Pham, THG ; Heykoop, M ; Malysheva, E ; Malysheva, V ; Martin, MP ; Morozova, OV ; Noisripoom, W ; Overton, BE ; Rea, AE ; Sewall, BJ ; Smith, ME ; Smyth, CW ; Tasanathai, K ; Visagie, CM ; Adamcik, S ; Alves, A ; Andrade, JP ; Aninat, MJ ; Araujo, RVB ; Bordallo, JJ ; Boufleur, T ; Baroncelli, R ; Barreto, RW ; Bolin, J ; Cabero, J ; Cabon, M ; Cafa, G ; Caffot, MLH ; Cai, L ; Carlavilla, JR ; Chavez, R ; de Castro, RRL ; Delgat, L ; Deschuyteneer, D ; Dios, MM ; Dominguez, LS ; Evans, HC ; Eyssartier, G ; Ferreira, BW ; Figueiredo, CN ; Liu, F ; Fournier, J ; Galli-Terasawa, LV ; Gil-Duran, C ; Glienke, C ; Goncalves, MFM ; Gryta, H ; Guarro, J ; Himaman, W ; Hywel-Jones, N ; Iturrieta-Gonzalez, I ; Ivanushkina, NE ; Jargeat, P ; Khalid, AN ; Khan, J ; Kiran, M ; Kiss, L ; Kochkina, GA ; Kolarik, M ; Kubatova, A ; Lodge, DJ ; Loizides, M ; Luque, D ; Manjon, JL ; Marbach, PAS ; Massola, NS ; Mata, M ; Miller, AN ; Mongkolsamrit, S ; Moreau, P-A ; Morte, A ; Mujic, A ; Navarro-Rodenas, A ; Nemeth, MZ ; Nobrega, TF ; Novakova, A ; Olariaga, I ; Ozerskaya, SM ; Palma, MA ; Petters-Vandresen, DAL ; Piontelli, E ; Popov, ES ; Rodriguez, A ; Requejo, O ; Rodrigues, ACM ; Rong, IH ; Roux, J ; Seifert, KA ; Silva, BDB ; Sklenar, F ; Smith, JA ; Sousa, JO ; Souza, HG ; De Souza, JT ; Svec, K ; Tanchaud, P ; Tanney, JB ; Terasawa, F ; Thanakitpipattana, D ; Torres-Garcia, D ; Vaca, I ; Vaghefi, N ; van Iperen, AL ; Vasilenko, OV ; Verbeken, A ; Yilmaz, N ; Zamora, JC ; Zapata, M ; Jurjevic, Z ; Groenewald, JZ (RIJKSHERBARIUM, 2019-12)
    Novel species of fungi described in this study include those from various countries as follows: Antarctica, Apenidiella antarctica from permafrost, Cladosporium fildesense from an unidentified marine sponge. Argentina, Geastrum wrightii on humus in mixed forest. Australia, Golovinomyces glandulariae on Glandularia aristigera, Neoanungitea eucalyptorum on leaves of Eucalyptus grandis, Teratosphaeria corymbiicola on leaves of Corymbia ficifolia, Xylaria eucalypti on leaves of Eucalyptus radiata. Brazil, Bovista psammophila on soil, Fusarium awaxy on rotten stalks of Zea mays, Geastrum lanuginosum on leaf litter covered soil, Hermetothecium mikaniae-micranthae (incl. Hermetothecium gen. nov.) on Mikania micrantha, Penicillium reconvexovelosoi in soil, Stagonosporopsis vannaccii from pod of Glycine max. British Virgin Isles, Lactifluus guanensis on soil. Canada, Sorocybe oblongispora on resin of Picea rubens. Chile, Colletotrichum roseum on leaves of Lapageria rosea. China, Setophoma caverna from carbonatite in Karst cave. Colombia, Lareunionomyces eucalypticola on leaves of Eucalyptus grandis. Costa Rica, Psathyrella pivae on wood. Cyprus, Clavulina iris on calcareous substrate. France, Chromosera ambigua and Clavulina iris var. occidentalis on soil. French West Indies, Helminthosphaeria hispidissima on dead wood. Guatemala, Talaromyces guatemalensis in soil. Malaysia, Neotracylla pini (incl. Tracyllales ord. nov. and Neotracylla gen. nov.) and Vermiculariopsiella pini on needles of Pinus tecunumanii. New Zealand, Neoconiothyrium viticola on stems of Vitis vinifera, Parafenestella pittospori on Pittosporum tenuifolium, Pilidium novae-zelandiae on Phoenix sp. Pakistan, Russula quercus-floribundae on forest floor. Portugal, Trichoderma aestuarinum from saline water. Russia, Pluteus liliputianus on fallen branch of deciduous tree, Pluteus spurius on decaying deciduous wood or soil. South Africa, Alloconiothyrium encephalarti, Phyllosticta encephalarticola and Neothyrostroma encephalarti (incl. Neothyrostroma gen. nov.) on leaves of Encephalartos sp., Chalara eucalypticola on leaf spots of Eucalyptus grandis × urophylla, Clypeosphaeria oleae on leaves of Olea capensis, Cylindrocladiella postalofficium on leaf litter of Sideroxylon inerme, Cylindromonium eugeniicola (incl. Cylindromonium gen. nov.) on leaf litter of Eugenia capensis, Cyphellophora goniomatis on leaves of Gonioma kamassi, Nothodactylaria nephrolepidis (incl. Nothodactylaria gen. nov. and Nothodactylariaceae fam. nov.) on leaves of Nephrolepis exaltata, Falcocladium eucalypti and Gyrothrix eucalypti on leaves of Eucalyptus sp., Gyrothrix oleae on leaves of Olea capensis subsp. macrocarpa, Harzia metrosideri on leaf litter of Metrosideros sp., Hippopotamyces phragmitis (incl. Hippopotamyces gen. nov.) on leaves of Phragmites australis, Lectera philenopterae on Philenoptera violacea, Leptosillia mayteni on leaves of Maytenus heterophylla, Lithohypha aloicola and Neoplatysporoides aloes on leaves of Aloe sp., Millesimomyces rhoicissi (incl. Millesimomyces gen. nov.) on leaves of Rhoicissus digitata, Neodevriesia strelitziicola on leaf litter of Strelitzia nicolai, Neokirramyces syzygii (incl. Neokirramyces gen. nov.) on leaf spots of Syzygium sp., Nothoramichloridium perseae (incl. Nothoramichloridium gen. nov. and Anungitiomycetaceae fam. nov.) on leaves of Persea americana, Paramycosphaerella watsoniae on leaf spots of Watsonia sp., Penicillium cuddlyae from dog food, Podocarpomyces knysnanus (incl. Podocarpomyces gen. nov.) on leaves of Podocarpus falcatus, Pseudocercospora heteropyxidicola on leaf spots of Heteropyxis natalensis, Pseudopenidiella podocarpi, Scolecobasidium podocarpi and Ceramothyrium podocarpicola on leaves of Podocarpus latifolius, Scolecobasidium blechni on leaves of Blechnum capense, Stomiopeltis syzygii on leaves of Syzygium chordatum, Strelitziomyces knysnanus (incl. Strelitziomyces gen. nov.) on leaves of Strelitzia alba, Talaromyces clemensii from rotting wood in goldmine, Verrucocladosporium visseri on Carpobrotus edulis. Spain, Boletopsis mediterraneensis on soil, Calycina cortegadensisi on a living twig of Castanea sativa, Emmonsiellopsis tuberculata in fluvial sediments, Mollisia cortegadensis on dead attached twig of Quercus robur, Psathyrella ovispora on soil, Pseudobeltrania lauri on leaf litter of Laurus azorica, Terfezia dunensis in soil, Tuber lucentum in soil, Venturia submersa on submerged plant debris. Thailand, Cordyceps jakajanicola on cicada nymph, Cordyceps kuiburiensis on spider, Distoseptispora caricis on leaves of Carex sp., Ophiocordyceps khonkaenensis on cicada nymph. USA, Cytosporella juncicola and Davidiellomyces juncicola on culms of Juncus effusus, Monochaetia massachusettsianum from air sample, Neohelicomyces melaleucae and Periconia neobrittanica on leaves of Melaleuca styphelioides × lanceolata, Pseudocamarosporium eucalypti on leaves of Eucalyptus sp., Pseudogymnoascus lindneri from sediment in a mine, Pseudogymnoascus turneri from sediment in a railroad tunnel, Pulchroboletus sclerotiorum on soil, Zygosporium pseudomasonii on leaf of Serenoa repens. Vietnam, Boletus candidissimus and Veloporphyrellus vulpinus on soil. Morphological and culture characteristics are supported by DNA barcodes.
  • Item
    Thumbnail Image
    Genome-wide analysis of canine oral malignant melanoma metastasis-associated gene expression.
    Bowlt Blacklock, KL ; Birand, Z ; Selmic, LE ; Nelissen, P ; Murphy, S ; Blackwood, L ; Bass, J ; McKay, J ; Fox, R ; Beaver, S ; Starkey, M (Springer Science and Business Media LLC, 2019-04-24)
    Oral malignant melanoma (OMM) is the most common canine melanocytic neoplasm. Overlap between the somatic mutation profiles of canine OMM and human mucosal melanomas suggest a shared UV-independent molecular aetiology. In common with human mucosal melanomas, most canine OMM metastasise. There is no reliable means of predicting canine OMM metastasis, and systemic therapies for metastatic disease are largely palliative. Herein, we employed exon microarrays for comparative expression profiling of FFPE biopsies of 18 primary canine OMM that metastasised and 10 primary OMM that did not metastasise. Genes displaying metastasis-associated expression may be targets for anti-metastasis treatments, and biomarkers of OMM metastasis. Reduced expression of CXCL12 in the metastasising OMMs implies that the CXCR4/CXCL12 axis may be involved in OMM metastasis. Increased expression of APOBEC3A in the metastasising OMMs may indicate APOBEC3A-induced double-strand DNA breaks and pro-metastatic hypermutation. DNA double strand breakage triggers the DNA damage response network and two Fanconi anaemia DNA repair pathway members showed elevated expression in the metastasising OMMs. Cross-validation was employed to test a Linear Discriminant Analysis classifier based upon the RT-qPCR-measured expression levels of CXCL12, APOBEC3A and RPL29. Classification accuracies of 94% (metastasising OMMs) and 86% (non-metastasising OMMs) were estimated.
  • Item
    Thumbnail Image
    A synonymous germline variant in a gene encoding a cell adhesion molecule is associated with cutaneous mast cell tumour development in Labrador and Golden Retrievers.
    Biasoli, D ; Compston-Garnett, L ; Ricketts, SL ; Birand, Z ; Courtay-Cahen, C ; Fineberg, E ; Arendt, M ; Boerkamp, K ; Melin, M ; Koltookian, M ; Murphy, S ; Rutteman, G ; Lindblad-Toh, K ; Starkey, M ; Clark, LA (Public Library of Science (PLoS), 2019-03)
    Mast cell tumours are the most common type of skin cancer in dogs, representing a significant concern in canine health. The molecular pathogenesis is largely unknown, but breed-predisposition for mast cell tumour development suggests the involvement of inherited genetic risk factors in some breeds. In this study, we aimed to identify germline risk factors associated with the development of mast cell tumours in Labrador Retrievers, a breed with an elevated risk of mast cell tumour development. Using a methodological approach that combined a genome-wide association study, targeted next generation sequencing, and TaqMan genotyping, we identified a synonymous variant in the DSCAM gene on canine chromosome 31 that is associated with mast cell tumours in Labrador Retrievers. DSCAM encodes a cell-adhesion molecule. We showed that the variant has no effect on the DSCAM mRNA level but is associated with a significant reduction in the level of the DSCAM protein, suggesting that the variant affects the dynamics of DSCAM mRNA translation. Furthermore, we showed that the variant is also associated with mast cell tumours in Golden Retrievers, a breed that is closely related to Labrador Retrievers and that also has a predilection for mast cell tumour development. The variant is common in both Labradors and Golden Retrievers and consequently is likely to be a significant genetic contributor to the increased susceptibility of both breeds to develop mast cell tumours. The results presented here not only represent an important contribution to the understanding of mast cell tumour development in dogs, as they highlight the role of cell adhesion in mast cell tumour tumourigenesis, but they also emphasise the potential importance of the effects of synonymous variants in complex diseases such as cancer.
  • Item
    Thumbnail Image
    Increase in coleoptile length and establishment by Lcol-A1, a genetic locus with major effect in wheat
    Bovill, WD ; Hyles, J ; Zwart, AB ; Ford, BA ; Perera, G ; Phongkham, T ; Brooks, BJ ; Rebetzke, GJ ; Hayden, MJ ; Hunt, JR ; Spielmeyer, W (BMC, 2019-07-29)
    BACKGROUND: Good establishment is important for rapid leaf area development in wheat crops. Poor establishment results in fewer, later-emerging plants, reduced leaf area and tiller number. In addition, poorly established crops suffer from increased soil moisture loss through evaporation and greater competition from weeds while fewer spikes are produced which can reduce grain yield. By protecting the emerging first leaf, the coleoptile is critical for achieving good establishment, and its length and interaction with soil physical properties determine the ability of a cultivar to emerge from depth. RESULTS: Here we characterise a locus on chromosome 1AS, that increases coleoptile length in wheat, which we designate as Lcol-A1. We identified Lcol-A1 by bulked-segregant analysis and used a Halberd-derived population to fine map the gene to a 2 cM region, equivalent to 7 Mb on the IWGSC genome reference sequence of Chinese Spring (RefSeqv1.0). By sowing recently released cultivars and near-isogenic lines in the field at both conventional and deep sowing depths, we confirmed that Locl-A1 was associated with increased emergence from depth in the presence and absence of conventional dwarfing genes. Flanking markers IWB58229 and IWA710 were developed to assist breeders to select for long coleoptile wheats. CONCLUSIONS: Increased coleoptile length is sought in many global wheat production areas to improve crop emergence. The identification of the gene Lcol-A1, together with tools to allow wheat breeders to track the gene, will enable improvements to be made for this important trait.
  • Item
    Thumbnail Image
    Putative Iron-Sulfur Proteins Are Required for Hydrogen Consumption and Enhance Survival of Mycobacteria
    Islam, ZF ; Cordero, PRF ; Greening, C (FRONTIERS MEDIA SA, 2019-11-22)
    Aerobic soil bacteria persist by scavenging molecular hydrogen (H2) from the atmosphere. This key process is the primary sink in the biogeochemical hydrogen cycle and supports the productivity of oligotrophic ecosystems. In Mycobacterium smegmatis, atmospheric H2 oxidation is catalyzed by two phylogenetically distinct [NiFe]-hydrogenases, Huc (group 2a) and Hhy (group 1h). However, it is currently unresolved how these enzymes transfer electrons derived from H2 oxidation into the aerobic respiratory chain. In this work, we used genetic approaches to confirm that two putative iron-sulfur cluster proteins encoded on the hydrogenase structural operons, HucE and HhyE, are required for H2 consumption in M. smegmatis. Sequence analysis show that these proteins, while homologous, fall into distinct phylogenetic clades and have distinct metal-binding motifs. H2 oxidation was reduced when the genes encoding these proteins were deleted individually and was eliminated when they were deleted in combination. In turn, the growth yield and long-term survival of these deletion strains was modestly but significantly reduced compared to the parent strain. In both biochemical and phenotypic assays, the mutant strains lacking the putative iron-sulfur proteins phenocopied those of hydrogenase structural subunit mutants. We hypothesize that these proteins mediate electron transfer between the catalytic subunits of the hydrogenases and the menaquinone pool of the M. smegmatis respiratory chain; however, other roles (e.g., in maturation) are also plausible and further work is required to resolve their role. The conserved nature of these proteins within most Hhy- or Huc-encoding organisms suggests that these proteins are important determinants of atmospheric H2 oxidation.
  • Item
    Thumbnail Image
    Two Chloroflexi classes independently evolved the ability to persist on atmospheric hydrogen and carbon monoxide
    Islam, ZF ; Cordero, PRF ; Feng, J ; Chen, Y-J ; Bay, SK ; Jirapanjawat, T ; Gleadow, RM ; Carere, CR ; Stott, MB ; Chiri, E ; Greening, C (SPRINGERNATURE, 2019-07)
    Most aerobic bacteria exist in dormant states within natural environments. In these states, they endure adverse environmental conditions such as nutrient starvation by decreasing metabolic expenditure and using alternative energy sources. In this study, we investigated the energy sources that support persistence of two aerobic thermophilic strains of the environmentally widespread but understudied phylum Chloroflexi. A transcriptome study revealed that Thermomicrobium roseum (class Chloroflexia) extensively remodels its respiratory chain upon entry into stationary phase due to nutrient limitation. Whereas primary dehydrogenases associated with heterotrophic respiration were downregulated, putative operons encoding enzymes involved in molecular hydrogen (H2), carbon monoxide (CO), and sulfur compound oxidation were significantly upregulated. Gas chromatography and microsensor experiments showed that T. roseum aerobically respires H2 and CO at a range of environmentally relevant concentrations to sub-atmospheric levels. Phylogenetic analysis suggests that the hydrogenases and carbon monoxide dehydrogenases mediating these processes are widely distributed in Chloroflexi genomes and have probably been horizontally acquired on more than one occasion. Consistently, we confirmed that the sporulating isolate Thermogemmatispora sp. T81 (class Ktedonobacteria) also oxidises atmospheric H2 and CO during persistence, though further studies are required to determine if these findings extend to mesophilic strains. This study provides axenic culture evidence that atmospheric CO supports bacterial persistence and reports the third phylum, following Actinobacteria and Acidobacteria, to be experimentally shown to mediate the biogeochemically and ecologically important process of atmospheric H2 oxidation. This adds to the growing body of evidence that atmospheric trace gases are dependable energy sources for bacterial persistence.
  • Item
    Thumbnail Image
    Atmospheric carbon monoxide oxidation is a widespread mechanism supporting microbial survival
    Cordero, PRF ; Bayly, K ; Leung, PM ; Huang, C ; Islam, ZF ; Schittenhelm, RB ; King, GM ; Greening, C (SPRINGERNATURE, 2019-11)
    Carbon monoxide (CO) is a ubiquitous atmospheric trace gas produced by natural and anthropogenic sources. Some aerobic bacteria can oxidize atmospheric CO and, collectively, they account for the net loss of ~250 teragrams of CO from the atmosphere each year. However, the physiological role, genetic basis, and ecological distribution of this process remain incompletely resolved. In this work, we addressed these knowledge gaps through culture-based and culture-independent work. We confirmed through shotgun proteomic and transcriptional analysis that the genetically tractable aerobic soil actinobacterium Mycobacterium smegmatis upregulates expression of a form I molydenum-copper carbon monoxide dehydrogenase by 50-fold when exhausted for organic carbon substrates. Whole-cell biochemical assays in wild-type and mutant backgrounds confirmed that this organism aerobically respires CO, including at sub-atmospheric concentrations, using the enzyme. Contrary to current paradigms on CO oxidation, the enzyme did not support chemolithoautotrophic growth and was dispensable for CO detoxification. However, it significantly enhanced long-term survival, suggesting that atmospheric CO serves a supplemental energy source during organic carbon starvation. Phylogenetic analysis indicated that atmospheric CO oxidation is widespread and an ancestral trait of CO dehydrogenases. Homologous enzymes are encoded by 685 sequenced species of bacteria and archaea, including from seven dominant soil phyla, and we confirmed genes encoding this enzyme are abundant and expressed in terrestrial and marine environments. On this basis, we propose a new survival-centric model for the evolution of aerobic CO oxidation and conclude that, like atmospheric H2, atmospheric CO is a major energy source supporting persistence of aerobic heterotrophic bacteria in deprived or changeable environments.
  • Item
    Thumbnail Image
    Back to the roots: protocol for the photoautotrophic micropropagation of medicinal Cannabis
    Kodym, A ; Leeb, CJ (SPRINGER, 2019-08)
    The aim of this protocol was to develop an alternative in vitro propagation system for Cannabis sativa L. by mimicking nursery-based vegetative propagation. Photoautotrophic micropropagation (PAM) was achieved on rockwool blocks as substrate combined with commercially available fertilizer suitable for cannabis cultivation. Stock plants were initiated after sterilisation in forced-ventilated glass jars which then provided a continuous supply of shoot tip and nodal cuttings. A 97.5% rooting rate of in vitro shoot tip cuttings and successful acclimatisation were achieved within 3 weeks in glass vessels with passive ventilation.