School of Agriculture, Food and Ecosystem Sciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 924
  • Item
    No Preview Available
    Framing ocean acidification to mobilise action under multilateral environmental agreements
    Harrould-Kolieb, ER (ELSEVIER SCI LTD, 2020-02)
    Ocean acidification has long been framed by its epistemic community as a problem of carbon dioxide emissions that is concurrent to climate change. Framing ocean acidification in this way has been effective at garnering policy action at the domestic level in the United States. It is argued, however, in this paper that this framing has been counterproductive at the international level, resulting in two main impediments to the international governance of this issue. Firstly, defining ocean acidification as a concurrent problem to climate change, rather than as an impact of it, has resulted in the United Nations Framework Convention on Climate Change being interpreted as containing no obligation to address ocean acidification. Secondly, focussing almost solely on the reduction of global emissions of carbon dioxide as the only global solution to ocean acidification has resulted in ocean and biodiversity-related regimes that do not have the mandate to regulate CO2 emissions as being viewed as without the recourse to respond. Through an examination of the causes and consequences of ocean acidification and the general objectives of existing multilateral environmental agreements, a set of alternative problem frames are developed in this paper that could be deployed to mobilize action under existing environmental regimes.
  • Item
    Thumbnail Image
    Decision-making of municipal urban forest managers through the lens of governance
    Ordonez, C ; Threlfall, CG ; Livesley, SJ ; Kendal, D ; Fuller, RA ; Davern, M ; van der Ree, R ; Hochuli, DF (ELSEVIER SCI LTD, 2020-02)
    Awareness of the benefits of urban trees has led many cities to develop ambitious targets to increase tree numbers and canopy cover. Policy instruments that guide the planning of cities recognize the need for new governance arrangements to implement this agenda. Urban forests are greatly influenced by the decisions of municipal managers, but there is currently no clear understanding of how municipal managers find support to implement their decisions via new governance arrangements. To fill this knowledge gap, we collected empirical data through interviews with 23 urban forest municipal managers in 12 local governments in Greater Melbourne and regional Victoria, Australia, and analysed these data using qualitative interpretative methods through a governance lens. The goal of this was to understand the issues and challenges, stakeholders, resources, processes, and rules behind the decision-making of municipal managers. Municipal managers said that urban densification and expansion were making it difficult for them to implement their strategies to increase tree numbers and canopy cover. The coordination of stakeholders was more important for managers to find support to implement their decisions than having a bigger budget. The views of the public or wider community and a municipal government culture of risk aversion were also making it difficult for municipal managers to implement their strategies. Decision-making priorities and processes were not the same across urban centres. Lack of space to grow trees in new developments, excessive tree removal, and public consultation, were ideas more frequently raised in inner urban centres, while urban expansion, increased active use of greenspaces, and lack of data/information about tree assets were concerns for outer and regional centres. Nonetheless, inter-departmental coordination was a common theme shared among all cities. Strengthening coordination processes is an important way for local governments to overcome these barriers and effectively implement their urban forest strategies.
  • Item
    Thumbnail Image
    Evaluation of Spectral Indices for Assessing Fire Severity in Australian Temperate Forests
    Tran, BN ; Tanase, MA ; Bennett, LT ; Aponte, C (MDPI AG, 2018)
    Spectral indices derived from optical remote sensing data have been widely used for fire-severity classification in forests from local to global scales. However, comparative analyses of multiple indices across diverse forest types are few. This represents an information gap for fire management agencies in areas like temperate south-eastern Australia, which is characterised by a diversity of natural forests that vary in structure, and in the fire-regeneration strategies of the dominant trees. We evaluate 10 spectral indices across eight areas burnt by wildfires in 1998, 2006, 2007, and 2009 in south-eastern Australia. These wildfire areas encompass 13 forest types, which represent 86% of the 7.9M ha region’s forest area. Forest types were aggregated into six forest groups based on their fire-regeneration strategies (seeders, resprouters) and structure (tree height and canopy cover). Index performance was evaluated for each forest type and forest group by examining its sensitivity to four fire-severity classes (unburnt, low, moderate, high) using three independent methods (anova, separability, and optimality). For the best-performing indices, we calculated index-specific thresholds (by forest types and groups) to separate between the four severity classes, and evaluated the accuracy of fire-severity classification on independent samples. Our results indicated that the best-performing indices of fire severity varied with forest type and group. Overall accuracy for the best-performing indices ranged from 0.50 to 0.78, and kappa values ranged from 0.33 (fair agreement) to 0.77 (substantial agreement), depending on the forest group and index. Fire severity in resprouter open forests and woodlands was most accurately mapped using the delta Normalised Burnt ratio (dNBR). In contrast, dNDVI (delta Normalised difference vegetation index) performed best for open forests with mixed fire responses (resprouters and seeders), and dNDWI (delta Normalised difference water index) was the most accurate for obligate seeder closed forests. Our analysis highlighted the low sensitivity of all indices to fire impacts in Rainforest. We conclude that the optimal spectral index for quantifying fire severity varies with forest type, but that there is scope to group forests by structure and fire-regeneration strategy to simplify fire-severity classification in heterogeneous forest landscapes.
  • Item
    Thumbnail Image
    Current and future adoption of leucaena-grass pastures in northern Australia
    Kenny, S ; Drysdale, G (CENTRO INT AGRICULTURA TROPICAL-CIAT, 2019-09)
    Keynote paper presented at the International Leucaena Conference, 1‒3 November 2018, Brisbane, Queensland, Australia.The leucaena-grass pastures and target markets for adoption project was commissioned by Meat & Livestock Australia (MLA) to examine the scope for further adoption of leucaena-grass pastures in northern Australia. Drawing upon stakeholder and producer interviews, focus groups, mapping of biophysical factors critical to growing leucaena and a review of existing literature, regional adoption profiles were developed using the ADOPT model. This work outlines the current and future potential for adoption of leucaena in northern Australia and recommends 5 interrelated strategic actions designed to support the ongoing adoption. These actions have been designed to address the complex technical, social and biophysical requirements for successful adoption and will require collaboration between investors, The Leucaena Network, producers, government agencies and the private sector to be effective.
  • Item
    Thumbnail Image
    Origin and Evolution of the Kiwifruit Canker Pandemic
    McCann, HC ; Li, L ; Liu, Y ; Li, D ; Pan, H ; Zhong, C ; Rikkerink, EHA ; Templeton, MD ; Straub, C ; Colombi, E ; Rainey, PB ; Huang, H (OXFORD UNIV PRESS, 2017-04)
    Recurring epidemics of kiwifruit (Actinidia spp.) bleeding canker disease are caused by Pseudomonas syringae pv. actinidiae (Psa). In order to strengthen understanding of population structure, phylogeography, and evolutionary dynamics, we isolated Pseudomonas from cultivated and wild kiwifruit across six provinces in China. Based on the analysis of 80 sequenced Psa genomes, we show that China is the origin of the pandemic lineage but that strain diversity in China is confined to just a single clade. In contrast, Korea and Japan harbor strains from multiple clades. Distinct independent transmission events marked introduction of the pandemic lineage into New Zealand, Chile, Europe, Korea, and Japan. Despite high similarity within the core genome and minimal impact of within-clade recombination, we observed extensive variation even within the single clade from which the global pandemic arose.
  • Item
    Thumbnail Image
    Symbiosis islands of Loteae-nodulating Mesorhizobium comprise three radiating lineages with concordant nod gene complements and nodulation host-range groupings
    Perry, BJ ; Sullivan, JT ; Colombi, E ; Murphy, RJT ; Ramsay, JP ; Ronson, CW (MICROBIOLOGY SOC, 2020-09)
    Mesorhizobium is a genus of soil bacteria, some isolates of which form an endosymbiotic relationship with diverse legumes of the Loteae tribe. The symbiotic genes of these mesorhizobia are generally carried on integrative and conjugative elements termed symbiosis islands (ICESyms). Mesorhizobium strains that nodulate Lotus spp. have been divided into host-range groupings. Group I (GI) strains nodulate L. corniculatus and L. japonicus ecotype Gifu, while group II (GII) strains have a broader host range, which includes L. pedunculatus. To identify the basis of this extended host range, and better understand Mesorhizobium and ICESym genomics, the genomes of eight Mesorhizobium strains were completed using hybrid long- and short-read assembly. Bioinformatic comparison with previously sequenced mesorhizobia genomes indicated host range was not predicted by Mesorhizobium genospecies but rather by the evolutionary relationship between ICESym symbiotic regions. Three radiating lineages of Loteae ICESyms were identified on this basis, which correlate with Lotus spp. host-range grouping and have lineage-specific nod gene complements. Pangenomic analysis of the completed GI and GII ICESyms identified 155 core genes (on average 30.1 % of a given ICESym). Individual GI or GII ICESyms carried diverse accessory genes with an average of 34.6 % of genes unique to a given ICESym. Identification and comparative analysis of NodD symbiotic regulatory motifs - nod boxes - identified 21 branches across the NodD regulons. Four of these branches were associated with seven genes unique to the five GII ICESyms. The nod boxes preceding the host-range gene nodZ in GI and GII ICESyms were disparate, suggesting regulation of nodZ may differ between GI and GII ICESyms. The broad host-range determinant(s) of GII ICESyms that confer nodulation of L. pedunculatus are likely present amongst the 53 GII-unique genes identified.
  • Item
    Thumbnail Image
    Retrieval of Hyperspectral Information from Multispectral Data for Perennial Ryegrass Biomass Estimation
    de Alckmin, GT ; Kooistra, L ; Rawnsley, R ; de Bruin, S ; Lucieer, A (MDPI, 2020-12)
    The use of spectral data is seen as a fast and non-destructive method capable of monitoring pasture biomass. Although there is great potential in this technique, both end users and sensor manufacturers are uncertain about the necessary sensor specifications and achievable accuracies in an operational scenario. This study presents a straightforward parametric method able to accurately retrieve the hyperspectral signature of perennial ryegrass (Lolium perenne) canopies from multispectral data collected within a two-year period in Australia and the Netherlands. The retrieved hyperspectral data were employed to generate optimal indices and continuum-removed spectral features available in the scientific literature. For performance comparison, both these simulated features and a set of currently employed vegetation indices, derived from the original band values, were used as inputs in a random forest algorithm and accuracies of both methods were compared. Our results have shown that both sets of features present similar accuracies (root mean square error (RMSE) ≈490 and 620 kg DM/ha) when assessed in cross-validation and spatial cross-validation, respectively. These results suggest that for pasture biomass retrieval solely from top-of-canopy reflectance (ranging from 550 to 790 nm), better performing methods do not rely on the use of hyperspectral or, yet, in a larger number of bands than those already available in current sensors.
  • Item
    Thumbnail Image
    Microbial communities in top- and subsoil of repacked soil columns respond differently to amendments but their diversity is negatively correlated with plant productivity
    Celestina, C ; Wood, JL ; Manson, JB ; Wang, X ; Sale, PWG ; Tang, C ; Franks, AE (NATURE PORTFOLIO, 2019-06-20)
    Organic and inorganic amendments with equivalent nutrient content may have comparable fertilizer effects on crop yield, but their effects on the soil microbial community and subsequent plant-soil-microbe interactions in this context are unknown. This experiment aimed to understand the relationship between soil microbial communities, soil physicochemical characteristics and crop performance after addition of amendments to soil. Poultry litter and synthetic fertilizer with balanced total nitrogen (N) content equivalent to 1,200 kg ha-1 were added to the topsoil (0-10 cm) or subsoil layer (20-30 cm) of repacked soil columns. Wheat plants were grown until maturity. Soil samples were taken at Zadoks 87-91 (76 days after sowing) for analysis of bacterial and fungal communities using 16S and ITS amplicon sequencing. The interaction between amendment type and placement depth had significant effects on bacterial and fungal community structure and diversity in the two soil layers. Addition of poultry litter and fertilizer stimulated or suppressed different taxa in the topsoil and subsoil leading to divergence of these layers from the untreated control. Both amendments reduced microbial community richness, diversity and evenness in the topsoil and subsoil compared to the nil-amendment control, with these reductions in diversity being consistently negatively correlated with plant biomass (root and shoot weight, root length, grain weight) and soil fertility (soil NH4+, shoot N). These results indicate that in this experimental system, the soil microbial diversity was correlated negatively with plant productivity.
  • Item
    Thumbnail Image
    Microencapsulated Tuna Oil Results in Higher Absorption of DHA in Toddlers
    Fard, SG ; Loh, SP ; Turchini, GM ; Wang, B ; Elliott, G ; Sinclair, AJ (MDPI, 2020-01)
    : Docosahexaenoic acid (DHA) is an essential component for brain and visual acuity development during foetal and early postnatal life. A newly released directive under the European Commission stipulates DHA as a mandatory ingredient in infant formula. This poses challenges to manufacturers in preserving the stability and bioavailability of DHA at levels akin to human breast milk. The aims of this study were (a) to investigate the bioavailability of microencapsulated omega-3 DHA formulations in healthy toddlers compared with high DHA fish oil for a one-month period and (b) to assess the effect of DHA supplementation on children's sleep and cry patterns. Sixty toddlers were randomly allocated to four groups: 1. unfortified formula, 2. unfortified formula plus high DHA tuna oil, 3. fortified formula with dairy-based microencapsulated high DHA tuna oil powder, and 4. fortified formula with allergenic-free microencapsulated high DHA tuna oil powder. Bioavailability was assessed from both blood and faecal fatty acid levels. The results showed an enhanced bioavailability with significantly greater concentrations of blood DHA levels in formulas with microencapsulated powders. There were no significant effects of treatment on sleep and cry patterns. Application and delivery of microencapsulated DHA tuna oil powder in toddlers' formula provided better bioavailability of the active DHA.
  • Item
    Thumbnail Image
    Tree water-use strategies to improve stormwater retention performance of biofiltration systems
    Szota, C ; McCarthy, MJ ; Sanders, GJ ; Farrell, C ; Fletcher, TD ; Arndt, SK ; Livesley, SJ (PERGAMON-ELSEVIER SCIENCE LTD, 2018-11-01)
    Biofiltration systems are highly valued in urban landscapes as they remove pollutants from stormwater runoff whilst contributing to a reduction in runoff volumes. Integrating trees in biofilters may improve their runoff retention performance, as trees have greater transpiration than commonly used sedge or herb species. High transpiration rates will rapidly deplete retained water, creating storage capacity prior to the next runoff event. However, a tree with high transpiration rates in a biofilter system will likely be frequently exposed to drought stress. Selecting appropriate tree species therefore requires an understanding of how different trees use water and how they respond to substrate drying. We selected 20 tree species and quantified evapotranspiration (ET) and drought stress (leaf water potential; Ψ) in relation to substrate water content. To compare species, we developed metrics which describe: (i) maximum rates of ET under well-watered conditions, (ii) the sensitivity of ET and (iii) the response of Ψ to declining substrate water content. Using these three metrics, we classified species into three groups: risky, balanced or conservative. Risky and balanced species showed high maximum ET, whereas conservative species always had low ET. As substrates dried, the balanced species down-regulated ET to delay the onset of drought stress; whereas risky species did not. Therefore, balanced species with high ET are more likely to improve the retention performance of biofiltration systems without introducing significant drought risk. This classification of tree water use strategies can be easily integrated into water balance models and improve tree species selection for biofiltration systems.